计算方法上机作业 下载本文

计算方法上机报告

上机实习题目

1.某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。已探测到一组等分点位置的深度数据(单位:米)如下表所示: 分点 0 1 2 3 4 5 6 10.13 13 10.22 20 10.93 深度 9.01 8.96 7.96 7.97 8.02 9.05 分点 深度 分点 7 11.18 14 8 12.26 15 9 13.28 16 10 13.32 17 11 12.61 18 12 11.29 19 10.80 深度 9.15 7.90 7.95 8.86 9.81 (1)请用合适的曲线拟合所测数据点;

(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图; (1)算法思想

分段多项式是由一些在相互连接的区间上的不同多项式连接而成的一条连续曲线,其中三次样条插值方法是一种具有较好“光滑性”的分段插值方法。在本题中,假设所铺设的光缆足够柔软,在铺设过程中光缆触地走势光滑,紧贴地面,并且忽略水流对光缆的冲击。

计算光缆长度时,用如下公式:

L??200200f(x)ds

??f(x)1?f'(x)2dx

???k?019k?1kf(x)1?f'(x)2dx

??(?x)2?(?y)2 本题采取三次样条插值的方法,因为三次样条插值方法是一种具有较好“光滑性”的分段插值方法。根据提供的数据,只用x,y值,不包含导数值,因此采用第三类三次插值多项式进行插值编程。 设计算法如下:

1. For i?0,1,2,???,n 1.1 yi?Mi 2. For k?1,2

2.1 For i?n,n?1,?,k

2.1.1 (Mi?Mi?1)/(xi?xi?k)?Mi

3. x1?x0?h1 4. For i?1,2,?,n-1 4.1 xi?1?xi?hi?1

4.2 hi?1/(hi?hi?1)?ci;1?ci?ai;2?b 4.3 6Mi?1?di

5. d0?M0;dn?Mn;?0?c0

2?b0;?n?an;2?bn

6. b1??1,d1??1

7. 获取M的矩阵元素个数,存入m

8. For k?2,3,?,m 8.1 ak/?k?1?lk 8.2 bk-lk?ck?1??k 8.3 dk-lk??k?1??k 9. ?m/?m?Mm

10. For k?m?1,m?2,?,1 10.1 (?k?ck?Mk?1)/?k?Mk 11. 获取x的元素个数存入s 12.

1?k

13. For i?1,2,?,s?1

13.1 if ~x?xi then i?k;break

else i?1?k

14.

xk?xk?1?h;xk?~x?x;~? x?xk?1?x[Mk?1?3x3xh2h2?]/h?~?Mk?(yk?1?Mk?1)x?(yk?Mk)xy

6666(3)源程序

clear; clc;

x=0:1:20; %产生从0到20含21个等分点的数组 X=0:0.2:20;

y=[9.01,8.96,7.96,7.97,8.02,9.05,10.13,11.18,12.26,13.28,13.32,12.61,11.29,10.22,9.15,7.90,7.95,8.86,9.81,10.80,10.93]; %等分点位置的深度数据 n=length(x); %等分点的数目