习题1
1.
图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler,1707—1783)提出并解决了该问题。七桥问题是这样描述的:北区 一个人是否能在一次步行中穿越哥尼斯堡(现
东区 在叫加里宁格勒,在波罗的海南岸)城中全部岛区 的七座桥后回到起点,且每座桥只经过一次,
南区 图是这条河以及河上的两个岛和七座桥的草
图 七桥问题
图。请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点 1, 一次步行
2, 经过七座桥,且每次只经历过一次 3, 回到起点
该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法 =m-n
2.循环直到r=0 m=n n=r r=m-n 3 输出m
3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C++描述。
编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。
#include
int main() {
double value=0;
for(int n=1;n<=10000 ;++n) {
value=value*10+1; if(value 13==0) {
cout<<\至少为:\ break; }
}计算π值的问题能精确求解吗?编写程序,求解满足给定精度要求的π值
#include
int main () {
double a,b;
double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。为什么是6天呢?任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。例如,6=1+2+3,因此6是完美数。神6天创造世界,暗示着该创造是完美的。设计算法,判断给定的自然数是否是完美数
#include
int main() {
int value, k=1; cin>>value;
for (int i = 2;i!=value;++i) {
while (value % i == 0 ) {
k+=i;有4个人打算过桥,这个桥每次最多只能有两个人同时通过。他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。这就意味着两个人过桥后必须有一个人将手电筒带回来。每个人走路的速度是不同的:甲过桥要用1分钟,乙过桥要用2分钟,丙过桥要用5分钟,丁过桥要用10分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间?
由于甲过桥时间最短,那么每次传递手电的工作应有甲完成 甲每次分别带着乙丙丁过桥 例如:
第一趟:甲,乙过桥且甲回来
第二趟:甲,丙过桥且甲回来 第一趟:甲,丁过桥 一共用时19小时
9.欧几里德游戏:开始的时候,白板上有两个不相等的正整数,两个玩家交替行动,每次行动时,当前玩家都必须在白板上写出任意两个已经出现在板上的数字的差,而且这个数字必须是新的,也就是说,和白板上的任何一个已有的数字都不相同,当一方再也写不出新数字时,他就输了。请问,你是选择先行动还是后行动?为什么?
设最初两个数较大的为a, 较小的为b,两个数的最大公约数为factor。
则最终能出现的数包括: factor, factor*2, factor*3, ..., factor*(a/factor)=a. 一共a/factor个。
如果a/factor 是奇数,就选择先行动;否则就后行动。
习题4
1. 分治法的时间性能与直接计算最小问题的时间、合并子问题解的时间以及子问题的个数有关,试说明这几个参数与分治法时间复杂性之间的关系。
2. 证明:如果分治法的合并可以在线性时间内完成,则当子问题的规模之和小于原问题的规模时,算法的时间复杂性可达到O(n)。
O(N)=2*O(N/2)+x O(N)+x=2*O(N/2)+2*x
a*O(N)+x=a*(2*O(N/2)+x)+x=2*a *O(N/2)+(a+1)*x 由此可知,时间复杂度可达到O(n);
3.分治策略一定导致递归吗?如果是,请解释原因。如果不是,给出一个不包含递归的分治例子,并阐述这种分治和包含递归的分治的主要不同。
不一定导致递归。
如非递归的二叉树中序遍历。
这种分治方法与递归的二叉树中序遍历主要区别是:应用了栈这个数据结构。
4. 对于待排序序列(5, 3, 1, 9),分别画出归并排序和快速排序的递归运行轨迹。
归并排序:
第一趟:(5,3)(1,9); 第二趟:(3,5,1,9);