2018¸ßÖÐÊýѧÈ˽ÌB°æ±ØÐÞËÄ1.2.4¡¶µÚ1¿Îʱ ÓÕµ¼¹«Ê½(Ò»)¡·¾«Ñ¡Ï°Ìâ ÏÂÔØ±¾ÎÄ

µÚÒ»Õ 1.2 1.2.4 µÚ1¿Îʱ

Ò»¡¢Ñ¡ÔñÌâ

1£®(2018¡¤É½¶«Íþº£Ò»ÖиßÒ»ÆÚÄ©²âÊÔ)sin240¡ã£½( ) A£®

3

23 2

1B£®

21D£®£­ 2

C£®£­

[´ð°¸] C

[½âÎö] sin240¡ã£½sin(180¡ã£«60¡ã)£½£­sin60¡ã£½£­

3

. 2

11¦Ð

2£®(2018¡¤ºÓÄÏÐÂÏç¸ßÒ»ÆÚÄ©²âÊÔ)sinµÄֵΪ( )

31A£®

2C£®

3 2

1B£®£­ 2D£®£­3 2

[´ð°¸] D

11¦Ð¦Ð¦Ð3

[½âÎö] sin£½sin(4¦Ð£­)£½£­sin£½£­.

3332

3£®(2018¡¤É½¶«ÑĮ̀¸ßÒ»¼ì²â)cos(£­210¡ã)µÄֵΪ( ) 1

A£®

2C£®

3 2

1B£®£­ 2D£®£­3 2

[´ð°¸] D

[½âÎö] cos(£­210¡ã)£½cos210¡ã£½cos(180¡ã£«30¡ã) £½£­cos30¡ã£½£­

3

. 2

4£®ÒÑÖª½Ç¦ÈµÄÖձ߹ýµã(4£¬£­3)£¬Ôòcos(¦Ð£­¦È)£½( ) 4A£®

53C£®

5[´ð°¸] B

4B£®£­ 53D£®£­ 5

x4

[½âÎö] ÓÉÌâÒ⣬֪cos¦È£½£½£¬

r54

¡àcos(¦Ð£­¦È)£½£­cos¦È£½£­. 5

5£®ÉèA¡¢B¡¢CÊÇÒ»¸öÈý½ÇÐεÄÈý¸öÄڽǣ¬ÔòÔÚ¢Ùsin(A£«B)£­sinC£»¢Úcos(A£«B)£«cosC£»¦Ð

¢Ûtan(A£«B)£«tanC£»¢Ücot(A£«B)£­cotC(C¡Ù)£¬ÕâËĸöʽ×ÓÖÐֵΪ³£ÊýµÄÓÐ( )

2

A£®1¸ö C£®3¸ö [´ð°¸] C

[½âÎö] ¡ßA£«B£«C£½¦Ð£¬¡àA£«B£½¦Ð£­C£® ¡àsin(A£«B)£½sin(¦Ð£­C)£½sinC£¬ cos(A£«B)£½cos(¦Ð£­C)£½£­cosC£¬ tan(A£«B)£½tan(¦Ð£­C)£½£­tanC£¬ cot(A£«B)£½cot(¦Ð£­C)£½£­cotC£¬¹ÊÑ¡C£® Ô­ÌâËĸöʽ×ÓÖТ٢ڢÛʽΪ³£Êý£®

6£®Èç¹û¦Á¡¢¦ÂÂú×ã¦Á£«¦Â£½2¦Ð£¬ÔòÏÂÁÐʽ×ÓÖÐÕýÈ·µÄ¸öÊýÊÇ( ) ¢Ùsin¦Á£½sin¦Â£» ¢Úsin¦Á£½£­sin¦Â£» ¢Ûcos¦Á£½cos¦Â£» ¢Ütan¦Á£½£­tan¦Â. A£®1 C£®3 [´ð°¸] C

[½âÎö] ¡ß¦Á£«¦Â£½2¦Ð£¬¡à¦Á£½2¦Ð£­¦Â£¬¡àsin¦Á£½sin(2¦Ð£­¦Â)£½£­sin¦Â£¬cos¦Á£½cos(2¦Ð£­¦Â)£½cos¦Â£¬tan¦Á£½tan(2¦Ð£­¦Â)£½£­tan¦Â£¬¹Ê¢Ú¢Û¢ÜÕýÈ·£¬¡àÑ¡C£®

¶þ¡¢Ìî¿ÕÌâ

1

7£®ÒÑÖªcos(¦Ð£«¦Á)£½£­£¬Ôòtan(¦Á£­9¦Ð)£½________.

2[´ð°¸] ¡À3

1

[½âÎö] cos(¦Ð£«¦Á)£½£­cos¦Á£½£­£¬

21

cos¦Á£½£¬¡àtan¦Á£½¡À3£¬

2tan(¦Á£­9¦Ð)£½£­tan(9¦Ð£­¦Á)

B£®2 D£®4 B£®2¸ö D£®4¸ö

£½£­tan(¦Ð£­¦Á)£½tan¦Á£½¡À3.

8£®ÒÑÖª½Ç¦ÁµÄÖÕ±ßÉÏÒ»µãP(3a,4a)£¬a<0£¬Ôòcos(540¡ã£­¦Á)£½________. 3[´ð°¸]

5[½âÎö] cos¦Á£½

3a9a2£«16a2

£½3a3£½£­£¬ 5|a|5

3

cos(540¡ã£­¦Á)£½cos(180¡ã£­¦Á)£½£­cos¦Á£½. 5Èý¡¢½â´ðÌâ

9£®ÇóÏÂÁÐÈý½Çº¯ÊýʽµÄÖµ£º

(1)sin(£­840¡ã)cos1 470¡ã£­cos(£­420¡ã)sin(£­930¡ã)£» (2)sin(£­60¡ã)£«cos225¡ã£«tan135¡ã. [½âÎö]

(1)sin(£­840¡ã)¡¤cos1470¡ã£­cos(£­420¡ã)sin(£­930¡ã) £½£­sin840¡ãcos1 470¡ã£«cos420¡ãsin930¡ã

£½£­sin(2¡Á360¡ã£«120¡ã)cos(4¡Á360¡ã£«30¡ã)£«cos(360¡ã£«60¡ã)sin(2¡Á360¡ã£«210¡ã) £½£­sin120¡ãcos30¡ã£«cos60¡ãsin210¡ã

£½£­sin(180¡ã£­60¡ã)cos30¡ã£«cos60¡ãsin(180¡ã£«30¡ã) £½£­sin60¡ãcos30¡ã£­cos60¡ãsin30¡ã £½£­3311

¡Á£­¡Á£½£­1. 2222

(2)ԭʽ£½£­sin60¡ã£«cos(180¡ã£«45¡ã)£«tan(180¡ã£­45¡ã) £½£­£½£­3

£­cos45¡ã£­tan45¡ã 2

32£­£­1 22

2£«3£«2£½£­. 2

cot¦Á¡¤cos?¦Ð£«¦Á?¡¤sin2?3¦Ð£«¦Á?

10£®»¯¼ò£º. tan¦Á¡¤cos3?£­¦Ð£­¦Á?cot¦Á¡¤?£­cos¦Á?¡¤sin2?¦Ð£«¦Á?

[½âÎö] ԭʽ£½ 3

tan¦Á¡¤cos?¦Ð£«¦Á?