2015六年级数学下册第五单元数学广角鸽巢问题教案(新版人教版) 下载本文

★精品文档★

2015六年级数学下册第五单元数学广角鸽

巢问题教案(新版人教版)

第五单元数学广角 ——鸽巢问题单元备课 一、教材分析:

本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

2016全新精品资料-全新公文范文-全程指导写作 –独家原创

1 / 15

★精品文档★

“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。 二、三维目标: 1、知识与技能:

引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。 2、过程与方法:

(1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等

活动的学习方法,渗透数形结合的思想。

(2)学会与人合作,并能与人交流思维过程和结果。 3、情感态度与价值观:

(1)积极参与探索活动,体验数学活动充满着探索与创造。

2016全新精品资料-全新公文范文-全程指导写作 –独家原创

2 / 15

★精品文档★

(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体

验学数学、用数学的乐趣。

(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。 (4)理解知识的产生过程,受到历史唯物注意的教育。 三、教学重点:

应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。 四、教学难点:

理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

五、教学措施:

1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引

2016全新精品资料-全新公文范文-全程指导写作 –独家原创

3 / 15

★精品文档★

导学生先判断某个问题是否属于用”鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。 六、课时安排:3课时

鸽巢问题-------------------1课时 “鸽巢问题”的具体应用------1课时 练习课---------------------1课时

鱼岳镇第三小学电子教案 执教:第1课时时间: 教学课题:鸽巢问题

2016全新精品资料-全新公文范文-全程指导写作 –独家原创

4 / 15

★精品文档★

教学内容:教材第68-70页例1、例2,及“做一做”,及第71页练习十三的1-2题。 三维目标:

1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。 教学难点:找出“鸽巢问题”解决的窍门进行反复推理。 教具准备:多媒体课件。 教学过程:

一、创设情境,导入新知

老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-------出示课题 二、合作交流,探究新知

1、教学例1(课件出示例题1情境图)

2016全新精品资料-全新公文范文-全程指导写作 –独家原创

5 / 15