在小学数学非线性教学中实施有效教学策略的研究
本文所提出的非线性教学,是与线性教学相对的概念。非线性教学其环节设计不按比例、不呈直线顺序的关系,课堂行进过程会有不规则的运动和存在可能的思维突变。因此笔者认为非线性课堂是对学生思维现实的尊重,而不是强制的灌输某个文本概念以达成简单的“准确”。
“非线性”教学并不是主张教师提出一个课题后就完全“大撒手”。而是在教学过程中,给予学生充分探究的时间,独立或与人合作共同发现规律、获得真理。教师根据学情适当调整教学环节,从学情出发推进教学,以知识与思维方法两条主线并行的“板块式”结构推进教学,改变以往单纯以知识为主线、线性课堂结构,将数学思维的培养与具体数学知识、数学技能、数学思想、活动经验有机结合,帮助学生学会数学地思维,发展学生的数学思维。
关于将运筹学中的“非线性”思想引入教学研究中,当前在国内还处于初始阶段,其中具有代表性的是佛山市XX局,XX局教研室钱运涛主任主持的课题《小学数学“非线性”小组合作学习模式的实践研究》,其以“非线性”教学策略为指导,强调课前预习,激发学生的学习兴趣、探究欲望和生命潜能,研究重点聚焦在建立和完善“小组合作学习”模式,通过课堂上师生、生生间的深度互动,提高学生的参与度。但在学生探究问题的过程
中,教师如何充分发挥其主导的作用?在充分发挥学生学习主动性的同时,教师又如何做到该“放手”时就放手,该“介入”时就 “介入”呢?教师有效的教学策略仍是该教学模式的关注点,本文就教师在非线性教学过程中,如何实施有效教学策略开展指导等方面进行探讨。
一、构建课前三角探底模式,把握学生的真实起点灵活调整教学
元认知理论指出:学生自我监控能力对于学习数学非常重要,实施有序的思考步骤,让学生的学习活动成为其自觉的认知活动,充分发挥学生的主观能动性,实现学生的自我调节。为此,在实施非线性教学过程中,课前便要求学生分别从目标、问题、联系三个角度回忆相关的知识,从而加强对学习目标的认识,使不同层次的学生暴露出对所学内容目标的认知起点。这样,教师便可进一步了解学生对所学单元的自我可能存在问题以及思考目标、新知与旧知可能存在的联系,构建起学生认知基础的三角式探底模式。
例如在教学六年级下册《图形的放大与缩小》时,教师在课前布置学生进行课前思考。
1.目标:你认为本课需要掌握哪些内容?
2.问题:对于这些内容,你有什么不明白的问题? 3.联系:这些知识跟以前我们学过的哪些知识有关系? 这样的问题设置,使学生思考时有较广的范围,真正结合自
己基础、思维过程对新知进行梳理与思考,帮助不同层次的学生进行课前的深度思考,引发各层次学生对学习目标产生不同程度的认识,有助于学生对自我认知发展的认识,减少认知互动的盲目性、冲动性,提高在学习活动中的认知效率。同时还有效地避免了由于前置性问题过细、过小,而形成的线性思维、固化思维的情况出现,避免上课时单纯地汇报答案,把“数学课”简单地上成“汇报课”的尴尬场面出现。
值得注意的是在问题聚焦的过程中,教师应注意以下几个方面。
把握核心问题,做到心中有数。在实施教学过程中,并不是让学生说一个问题,教师就马上写一个问题,而是要将学生的问题听完后再归纳出本课的核心问题。当学生提出的问题重复,甚至有些问题与本课学习的联系不大时,教师应及时做出反应,引导学生找出本课的核心问题,这便需要在备课的时候,教师做到心中有数,把握好本课的核心概念及核心问题。
归纳问题时要精炼、清晰。在归纳问题的时候,应尽量将问题精简、清晰,避免过大、过空。如在上面的案例中,教师根据学生1和学生2的汇报,聚焦到了“怎样画”;根据学生3的汇报,聚焦了“变与不变”; 根据学生5的汇报则提出了“面积的变化”。 问题简练、清晰,有助于学生自主探究。 根据学生的问题,及时调整教学。教师要根据学生提出的问题及时进行删选,从而调整自己的教学活动。如在上面的案例中,