Çó£¨1£© E£¨X+Y£©;£¨2£© E£¨2X??3Y2£©. ¡¾½â¡¿(X)??????xfX(x)dx???0x?2edx?[?xe?2x???2x??00]?e-2xdx
x? ??e?2xd0??1 .2?? E(Y)??2??????1?4yyf(y)dy?y4e?dy Y?04yfY(y)dy??2??24y?4e?ydy?.21?.
??0428113´Ó¶ø(1)E(X?Y)?E(X)?E(Y)???.
244115(2)E(2X?3Y2)?2E(X)?3E(Y2)?2??3??
288
12.´üÖÐÓÐ12¸öÁã¼þ£¬ÆäÖÐ9¸öºÏ¸ñÆ·£¬3¸ö·ÏÆ·.°²×°»úÆ÷ʱ£¬´Ó´üÖÐÒ»¸öÒ»¸ö
µØÈ¡³ö£¨È¡³öºó²»·Å»Ø£©£¬ÉèÔÚÈ¡³öºÏ¸ñƷ֮ǰÒÑÈ¡³öµÄ·ÏÆ·ÊýΪËæ»ú±äÁ¿X£¬ÇóE£¨X£©ºÍD£¨X£©.
¡¾½â¡¿ÉèËæ»ú±äÁ¿X±íʾÔÚÈ¡µÃºÏ¸ñÆ·ÒÔÇ°ÒÑÈ¡³öµÄ·ÏÆ·Êý£¬ÔòXµÄ¿ÉÄÜÈ¡Öµ
Ϊ0£¬1£¬2£¬3.ΪÇóÆä·Ö²¼ÂÉ£¬ÏÂÃæÇóÈ¡ÕâЩ¿ÉÄÜÖµµÄ¸ÅÂÊ£¬Ò×Öª
939??0.7 5 0, P{X?1}???0.204, P{X?0} 1212113293219????0.0 4 1, P{X?3}?????0.0 05. P{X?2} 1211101211109ÓÚÊÇ£¬µÃµ½XµÄ¸ÅÂÊ·Ö²¼±íÈçÏ£º X 0 1 2 3 P 0.750 0.204 0.041 0.005 E(Y)??Óɴ˿ɵÃE(X)?0?0.750?1?0.204?2?0.041?3?0.005?0.301.
22E(X2)?0?75?0?120?.20?422?0.?041?3D(X)?EX(2?)E[X(2?)]0?.413(2?0.301)0.0050.413
0.322.
Ìâ29ͼ
29.ÉèËæ»ú±äÁ¿XºÍYµÄÁªºÏ·Ö²¼Ôڵ㣨0£¬1£©£¬£¨1£¬0£©¼°£¨1£¬1£©Îª¶¥µãµÄÈý
½ÇÐÎÇøÓòÉÏ·þ´Ó¾ùÔÈ·Ö²¼.£¨Èçͼ£©£¬ÊÔÇóËæ»ú±äÁ¿U=X+YµÄ·½²î. ¡¾½â¡¿D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
=D(X)+D(Y)+2[E(XY)??E(X)¡¤E(Y)]. ÓÉÌõ¼þÖªXºÍYµÄÁªºÏÃܶÈΪ
21
f(x,y)???2,(x,y)?G,?0,t?0. G?{(x,y)|?0x?1,?0y?x1?,y?
´Ó¶øfX(x)??????f(x,y)dy??11?x2dy?2x.
Òò´Ë
E(X)??10xf102x2dx?32,E(X211X(x)dx??)??02x3dx?2,
D(X)?E(X2)?[E(X)]2?1412?9?18.
ͬÀí¿ÉµÃ E(Y)?312,D(Y)?18.
E(XY)???2xydxdy?2?1xdx?1G01?xydy?512, Cov(X,Y)?E(XY)?E(X)?E(Y)?512?419??36, ÓÚÊÇ D(U)?D(X?Y)?118?118?236?134.ÉèËæ»ú±äÁ¿XºÍYµÄÁªºÏ¸ÅÂÊ·Ö²¼Îª Y ??1 0 1 X 0 0.07 0.18 0.15 1 0.08 0.32 0.20 ÊÔÇóXºÍYµÄÏà¹ØϵÊý¦Ñ. ¡¾½â¡¿ÓÉÒÑÖªÖªE(X)=0.6,E(Y)=0.2£¬¶øXYµÄ¸ÅÂÊ·Ö²¼Îª
YX ??1 0 1 P 0.08 0.72 0.2 ËùÒÔE£¨XY£©=??0.08+0.2=0.12ª± Cov(X,Y)=E(XY)??E(X)¡¤E(Y)=0.12??0.6¡Á0.2=0ª±
´Ó¶ø ?XY=0ª±
.
22
.18