专题四 较复杂的和差倍问题教案 下载本文

大愚教育中小学个性化学习中心

和差倍问题

专题简析:

前面我们学习了和倍、差倍、和差三种应用题,有的题目需要通过转化而成为和倍、差倍、和差问题,这类问题叫做复杂的和差倍问题。

解答和差倍问题,需要我们从整体上把握住问题的本质,将题目进行合理的转化,从而将较复杂的问题转化为一般和倍、差倍、和差应用题来解决。

例1.两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍。两箱原来各有茶叶多少千克?

分析与解答:由“两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍”可求出现在甲箱中有茶叶96÷(1+3)=24千克。由此可求出甲箱原来有茶叶24+12=36千克,乙箱原来有茶叶96-36=60千克。

练习一

1.书架的上、下两层共有书180本,如果从上层取下15本放入下层,那么下层的本数正好是上层的2倍。两层原来各有书多少本? 解:上层:180÷(2+1)=180÷3=60(本), 上层原有:60+15=75(本), 下层原有:180-75=105(本),

答:上层原来有75本书,下层原来有105本书.

2.某畜牧场共有绵羊和山羊3561只,后来卖了60只绵羊,又买来山羊100只,现在绵羊的只数比山羊的2倍多1只。原来绵羊和山羊各有多少只?

解析:把现在山羊的只数看作1份,绵羊的只数就是2份+1只。 现在山羊有:(3561-60+100-1)÷(1+2)= 1200(只) 原来山羊有:1200-100=1100(只) 原来绵羊有:3561-1100=2461(只)

例2.某工厂一、二、三车间共有工人280人,第一车间比第二车间多10人,第二车间比第三车间多15人。三个车间各有工人多少人?

分析与解答:这是多量的和差问题,解题的时候确定的标准不同,解法也就不同。如果以第二车间的人数为标准,第一车间减少10人,第三车间增加15人,那么280-10+15=285人是第二车间人数的3倍,由此可以求出第二车间有285÷3=95人,第一车间有95+10=105人,第三车间有95-15=80人。

练习二

1.一个三层书架共放书168本,上层比中层多12本,下层比中层少6本。三层各放书多少本?

2.四个数的和是152,第一个数比第二个数多16,比第三个数多20,比第四个数少12。第一个数和第四个数是多少?

例3.两个数相除,商是4,被除数、除数、商的和是124。被除数和除数各是多少?

分析与解答:从124里去掉商,是124-4=120,它是除数的1+4=5倍,除数是120÷5=24,

1

大愚教育中小学个性化学习中心

被除数是24×4=94。

练习三

1.在一个除法算式中,被除数、除数、商的和是123。已知商是3,被除数和除数各是多少?

2.两个数相除,商是17,余数是8,被除数、除数、商和余数的和是501,求被除数和除数是多少。

例4:甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍。甲、乙原来各有存款多少元?

分析与解答:由“乙存入110元,甲取出110元”,可知乙存入110元后相当于甲存款数的3倍,取出110×3=330元;而由甲的存款是乙的4倍,可知甲原有存款的3倍相当于乙原有存款的4×3=12倍,乙现在存入110元后相当于甲原有的12倍,取110×3=330元,所以,330+110=440元,相当于乙原有的12-1=11倍。所以,乙原有存款440÷11=40元,甲原有存款40×4=160元。

练习四

1.甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍。甲、乙原来各有存款多少元?

2.有大、中、小三筐菠萝,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍。大、中、小三筐各装菠萝多少千克?

课后练习

1.一个三层柜台共放皮鞋120双,第一层比第二层多放4双,第二层比第三层多7双,三层各多皮鞋多少双?

2.甲、乙两人共储蓄2000元,甲取出160元,乙又存入240元,这时甲储蓄的钱数比乙的2倍少20元。甲、乙两人原来各储蓄多少元?

解析: 分别取出、存入后,两人合计2080元:2000-160+240=2080(元) 假如给甲加上20元,就正好是乙的2倍了:2080+20=2100(元) 存取后,乙的钱数:2100÷(1+2)=700(元) 乙原来的钱数:700-240=460(元) 甲原来的钱数:2000-460=1540(元)

3.两个数相除,商是5,余数是7,被除数、除数、商、余数的和是187,求被除数。

4.刘叔叔的存款是李叔叔的6倍,如果刘叔叔取出1100元,李叔叔存入1100元,那么刘叔叔的存款是李叔叔的2倍。刘叔叔和李叔叔原来各有存款多少元?

2