江苏省扬州中学2012届高三下学期三月双周练(二)数学试题[1] 下载本文

HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”

②以下证明对于任意的m,直线AR与直线AQ的交点S均在直线:x?4上.

12事实上,由

1122?x22??y?1?4?x?my?1?,得?my?1?122?4y2?4,即?m?4?y22?2my?3?0,

记R?x,y?,Q?x,y?,则y?y100?设AR与交于点S(4,y),由设AQ与交于点

2?2m?3,yy?12m2?4m2?4y0y16y1?,y0?.4?2x1?2x1?2.

S0?(4,y0?),由

y0?y2?,4?2x2?2得y??x2y?2.

202y0?y0??6y?my2?1??2y2?my1?3?4my1y2?6?y1?y2?6y12y2?1??x1?2x2?2?x1?2??x2?2??x1?2??x2?2??12m?12m?22?m?4m?4?0?x1?2??x2?2?, ∴y0?y0?,即S与S?重合,

00这说明,当m变化时,点S恒在定直线:x?4上.

a

19.解:(1)∵f ?(x)=2+≥0对x?[1,+∞)恒成立,

x

∴2x+a≥0∴2+a≥0∴a≥-2.

?x1+x2?f (x1)+f (x2)lnx1+lnx2

?≤(2)f ??a≥222??

x1+x2x1+x2aln?lnx1+lnx2≤2ln

22

x1+x2x1+x21

证法一:∵≥x1·x2∴ln≥lnx1·x2=

222lnx1+lnx2

ln(x1·x2)=,得证.

2

?x1+x2?f (x1)+f (x2)lnx1+lnx2

?≤证法二:f ??a≥222??

·16·

HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”

x1+x2x1+x2

aln?lnx1+lnx2≤2ln

22

x+x2

令F(x)=2ln-lnx-lnx2 ∵F(x2)=0【要证

2

F(x)的最小值为F(x2)】

x-x221∴F?(x)=-= ∴当x>x2时,F?(x)

x+x2xx(x-x2)

>0,当0<x<x2时,F?(x)<0. ∴F(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,∴F(x)min=F(x2)=0

x1+x2

∴F(x)≥0∴F(x1)≥0∴lnx1+lnx2≤2ln,得2

证.

x2x2

(3)∵f (x)≤(a+3)x-∴2x+alnx≤(a+3)x-

22

x2

∴a(x-lnx)≥-x在[1,e]上有解

2

1x-1

∵(x-lnx)?=1-=≥0∴x-lnx在[1,e]上递

xx

增,∴x-lnx≥1-ln1=1>0

x2x2-x-x22∴a≥,令g(x)=∴g?(x)=

x-lnxx-lnx

x21

(x-1)(x-lnx)-(2-x)(1-)

x

(x-lnx)2

=x

(x-1)(-lnx+1)

2

(x-lnx)2

·17·

HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”

xxe

∵x∈[1,e]∴x-1≥0,-lnx+1=+ln>0∴g?(x)

x22

≥0∴g(x)在[1,e]上递增

1

∴a≥g(x)min=g(1)=-.

2

20.解:当n?1时,(1??)a???a?3,?a?3

1当n?2时,由(1??)S???a?2且?4?,(1??)S33111nnnn?1???an?1?2n?11?4?33

1?an??an?1?4n2

nna当??4时,①4rs?an?11ana1n?1?(n?2)???n?1n24244即an?(2n?1)?4n?1

bn① 设存在a,a,a成等比数列,则

[(2r?1)?4]?[(2t?1)?4]?(2s?1)?4

(2r?1)(2t?1)?4?(2s?1)由奇偶性知r?t?2s?0 整理得:

?(2r?1)(2t?1)?(r?t?1)?(r?t)?0这与r?t矛盾,所以不存在这样的r,s,t. (2)当时,①??42?42??42?4?a???a???(a?)??b ??4??4??4tr?1t?122s?2r?t?2s222nn?1n?1nn?1n?1n?1??b?是以3??4为首项,?为公比当??4且??4时,数列3??4nnb的等比数列;当??4时,3?0n 不是等比数列.

3??4n?12????4n??4??43??4n?1??n??4a3??4?n2?cn?n??()???44n?(??4)4②由①知b?,从而a

?

cn当??4时,注意到n???时,c?4不成立;

1?

·18·

n???,当n充分大时,

HLLYBQ整理 供“高中试卷网(http://sj.fjjy.org)”

2??4(3??4)2?0,??0??c?递增,而c当4???4时,?(??4)??43n1?4?cn?03

47只需??2?4????; ?4323?当??4时,c3n?34,符合条件;

4(3??4)2?0,??0??cn?4?当0???4时, 递减,c1?44?0?cn?,

3?(??4)cn?4成立;

综上所述,??(0,72] ??43319·

·