用二分法求方程的近似解教学设计
一、本节课内容分析与学情分析 1、本节课内容分析
本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。
所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。 2、本节课地位、作用
“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。
3、学生情况分析
学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。 二、教学目标
根据教材内容和学生的实际情况,本节课的教学目标设定如下:
1、通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。
2、借助计算器用二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做知识准备. 3、通过探究、展示、交流,养成良好的学习品质,增强合作意识。 通过具体问题体会逼近过程,感受精确与近似的相对统一。
三、教学重点、难点
重点:二分法原理及其探究过程,用二分法求方程的近似解
难点:对二分法原理的探究,对精确度、近似值的理解 四、教学方法与教学手段
教学方法:“问题驱动”和启发探究式教学方法
学法指导: 分组合作、互动探究、搭建平台、分散难点 教学手段: 计算机、投影仪、计算器
五、教学过程
(一) 设置情景,提出问题
问题1: 你会求哪些类型方程的解?
小组讨论有哪些方程不会求解?
并让学生把所提问题归纳并板书到黑板上
问题2:能不能求方程的近似解?
(二) 互动探究,获得新知
以求方程x+3x-1=0的近似解(精确度0.1)为例进行探究 探究1:怎样确定解所在的区间?
(1)图像法
(2)试值法 复习: 〈1〉方程的根与函数零点的关系
〈2〉根的存在性定理
探究2:怎样缩小解所在的区间?
李咏主持的幸运52中猜商品价格环节,让学生思考:
(1)主持人给出高了还是低了的提示有什么作用?
(2)如何猜才能最快猜出商品的价格?
问题3:为什么要取中点,好处是什么?
探究3:区间缩小到什么程度满足要求?
问题4: 精确度0.1指的是什么?与精确到0.1一样吗?
二分法的定义:
对于在区间[a,b]上连续不断且满足f(a)·f(b)?0的函数y?f(x),
通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点
逐步逼近零点,进而得到零点近似值的方法叫做二分法.
用二分法求零点近似值的步骤 :
3
给定精确度?,用二分法求函数f(x)的零点近似值的步骤如下:
1、确定区间[a,b],验证f(a)·f(b)?0,给定精确度?;
2、求区间(a,b)的中点c;
3、计算f(c):
(1)若f(c)=0, 则c就是函数的零点;
(2)若f(a)?f(c)<0, 则令b=c(此时零点x0?(a,c));
(3)若f(c)?f(b)<0, 则令a=c(此时零点x0?(c,b));
4、判断是否达到精确度?:
即若|a?b|??,则得到零点零点值a(或b);否则重复步骤2~4.
(三) 例题剖析,巩固新知
例:借助计算器用二分法求方程lnx+2x-6=0的近似解(精确度0.01)
两人一组,一人用计算器求值,一人记录结果;学生讲解缩小区间的方法和过程,教师点评.同时演示用计算机程序进行计算.
(四) 知识迁移,应用生活
(1)猜商品价格
(2)从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为 个
(五) 检验成果,深化理解
1. 方程4+2x-11=0的解在下列哪个区间内?你能给出一个满足精确度为0.1的近似解吗?
A (0,1) B (1,2) C (2,3) D (3,4)
说明: 二分法也能求方程的精确解
2. 下列函数的图像与x轴均有交点,其中不能用二分法求其零点的是( )
x