历年广东数列高考题汇编 下载本文

历年广东高考数列题汇编 一 选择或填空题

(2011年)11.已知{an}是递增的等比数列,若a2?2,a4?a3?4,则此数列的公比

q? .

4.巳知等比数列{an}满足an?0,n?1,2,log2a1?log2a3??log2a2n?1?

22n,且a5?a2n?5?2(n?3),则当n?1时,

A.n(2n?1) B.(n?1) C.n D.(n?1)

4.巳知数列{an}是等比数列,Sn 是它的前n项和,若a2?a3?2a1且a4与2a7的等差中项 为

225,则S5? 4A 35 B 33 C 31 D 29

6、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为

A.5 B.4 C. 3 D. 2

213.已知数列{an}的前n项和Sn?n?9n,则其通项an? ;若它的第k项满足

5?ak?8,则k? .

14、在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3)?_____;f(n)?_____(答案用n表示).

二.解答题

2…

图4

?、1.(2007广东文20)已知函数f(x)?x?x?1,?是方程f(x)?0的两个根(???),f?(x)是的导数,设a1?1,an?1?an?(1)求?、?的值;

(2)已知对任意的正整数n有an??,记bn?ln前n项和Sn.

f(an),(n?1,2,). f?(an)an??,(n?1,2,).求数列{bn}的

an???1?5 2?1?5?1?5 ??? ??

2220解:(1) 由 x?x?1?0 得x?222an?an?1an?1 (2) f??x??2x?1 an?1?an? ?2an?12an?1

an2?11?53?5?an2?1?5an?an?1??2an?122?2?an?1??an?11?53?5?an2?1?5an?2an?122?????1?5??an???a???22??n????1?5??an?????an???2? ? bn?1?2bn 又 b1?ln2

a1??3?5?ln?a1??3?51?5 4ln2?数列?bn?是一个首项为 4ln1?5,公比为2的等比数列; 24ln? Sn?

1?51?2n??1?52?4?2n?1?ln 1?221(an?1?2an?2)(n=3,4,…),数列?bn?满32. (2008广东文)设数列?an?满足a1?1,a2?2,an?足b1?1,bn(n?2,3,?)是非零整数,且对任意的正整数m 和自然数k,都有

?1?bm?bm?1???bm?k?1

(1)求数列?an?和?bn?的通项公式;

(2)若cn?nanbn(n?1,2,?),求数列?cn?的前n项和解:(1)由an?.

12(an?1?2an?2)得an?an?1??(an?1?an?2)33(n?3)

又a2?a1?1?0,所以数列{an?1?an}是以1为首项,公比为?2的等比数列, 3?2?∴an?1?an????,

?3?而an?a1?(a2?a1)?(a3?a2)?(a4?a3)?n?1?(an?an?1)

n?1?2?1????2n?2n?183?2?3??2??2??2???1?1??????????????1??????;

255?3??3??3??3?1?3??1?b1?b2?1??1?b2?b3?1??由??1?b2?1 得b2??1,由??1?b3?1,得b3?1,…, ?b?Z,b?0?b?Z,b?023?2?3

同理可得当n为偶数时,bn??1;当n为奇数时,bn?1,因此bn???1,??1,当n为奇数时

当n为偶数时?83?2?n?1??????55?3?(2)cn?nanbn??n?1?83?2?????5?5??3??当n为奇数时,

当n为奇数时,则Sn?c1?c2??cn,

当n为偶数时n?18888Sn?(?2??3??4??5555001283??2?22?????n)??1????2????3????55??3??3???3?12n?1?2??n????3?????4(n?1)3??2??2??2??2?????1????2????3?????n????55??3??3??3????3??当n为偶数时,

012888883??2??2??2?Sn?(?2??3??4???n)??1????2????3????555555??3??3???3?012n?14n3??2??2??2??2??????1????2????3?????n????55??3??3??3????3???2??2??2?令Tn?1????2????3?????3??3??3?12012

?2??n????3?n?1????

?2??n????3?3n?1…………………………①

n22?2??2??2?①?得Tn?1????2????3????33?3??3??3?①?②,得

?2??n???…………………②

?3?n?2?1???123n?1nnn122222223??????????????Tn?1??????????????n??????n???3?(3?n)??∴

23?3??3??3??3??3??3??3?1?3?4n?239(n?3)?2?n?当n为奇数时?n??553????2? Tn?9?(9?3n)??,因此Sn??n3???4n?279(n?3)?2?当n为偶数时????5?5?3??223. (2009广东理21)已知曲线Cn:x?2nx?y?0(n?1,2,).从点P(?1,0)向曲线Cn引斜率为kn(kn?0)的切线ln,切点为Pn(xn,yn).

(1)求数列{xn}与{yn}的通项公式; (2)证明:x1?x3?x5?21.

?x2n?1?1?xnx?2sinn 1?xnynln:y?kn(x?1),联立x2?2nx?y2?0得

解:(1)设直线

222222(1?kn)x2?(2kn?2n)x?kn?0,则??(2kn?2n)2?4(1?kn)kn?0,∴kn?n2n?1