武汉二中广雅中学2014~2015学年度上学期九年级数学月考三(word版有答案)(王雪ok) 下载本文

武汉二中广雅中学2014~2015学年度上学期九年级数学月考三

一、选择题(共10小题,每小题3分,共30分) 1.下列图形中,不是中心对称图形的是( ) A.线段 【选择】B

【解答】A是中心对称图形;B不是中心对称图形;C是中心对称图形;D是中心对称图形.

2.方程x2-7=3x的根的情况为( )

A.两个不等的实数根 B.有两个相等的实数根 C.有一个实数根 D.没有实数根 【选择】A 【解答】x的实数根.

3.如图,在⊙O中,半径OA⊥弦BC,∠ADC=25°,则∠AOB的度数为( ) A.50° 【选择】A 【解答】

4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是( ) A.相切 【选择】D

【解答】当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.

5.平面直角坐标系中,点P(1-a,b+2)关于原点对称的点在第二象限,则点Q(b-2,a-1)在( ) A.第一象限 【选择】C 【解答】

B.第二象限

C.第三象限

D.第四象限

B.相离

C.相离或相切

D.相切或相交

B.60°

C.30°

D.40°

2 B.正三角形 C.平行四边形 D.圆

?3x?7?0,

???3??4???7??37?0,?方程有两个不相等

2?BC,?AC?AB,??AOB?2?CDA?50?.

在⊙O中,OA?CDA?25?,

P?1?a,b?2?关于原点对称的点在第二象限,???1?a??0,

?点Q?b?2,a?1???b?2??0,?a?1,b??2,?b?2?0,a?1?0,

在第三象限.

6.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′的大小为( ) A.10°

B.15°

C.20°

D.30°

【选择】C 【解答】

旋转得到RtA?,点C?落在AB上,?AB?AB?,RtABCBC?AC?B???C?90?,??ABB??11(180???BAB?)?(180??40?)?70?,22??BB?C??90???ABB??90??70??20?.

7.如图,数轴上“0、1、2、3、…、11”对应的点表示的意义分别为:“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”,“12、13、…、23”对应的点表示的意义分别为:“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”,…,如此循环,则2014对应的点表示的意义为( )

A.富强 【选择】C

【解答】由已知得:数轴上的点表示的意义以12为循环节循环,且从0对应的点开始,

B.自由

C.诚信

D.友善

2014?167?12?10,10对应的点表示的意义为诚信,?2014对应的点表示的意义

为诚信.

8.某种植物的主干长出若干 数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,设每个支干长出x个分支,则x的值为( ) A.6 【选择】B 【解答】

主干为1,每个支干长出x个小分支,每个支干又长出同样数目的小分支,?小分

B.7

C.8

D.9

支的个数为:x?x?x2,?可列方程为:1?x?x2?57,解得:x1?7,x2??8

(舍去),答:每个支干长出7个小分支.

9.如图,已知边长为2的圆内接正方形ABCD中,P为边CD的中点,直线AP交圆于E点,则是弦DE的长为( ) A.10 【选择】C

【解答】连接CE,作EF

B.

10 5,

C.

210 5 D.

45 5?PF?DAP??PCE,?APD??CPE,?APD∽CPE,

515?,?PE?,1PE5?APDP?CPEP,

P为边CD的中点,?FEAD,

?APD∽EPF,?APDP?PEPF,

?555?1PF,?PF?12,?EF?,55DE?DF2?EF2?210. 5

10.函数y=ax2+bx+c与y=kx的图像如图所示,有以下结论:① b2-4ac>0;② a+b+c=k;③ 方程ax2+bx+c=k一定有两个不相等的实数根;④当1<x<3时,ax2+(b-k)x+c<0其中正确的个数为( ) A.1 【选择】C 【解答】(1)

抛物线与x轴没有交点,??

B.2

C.3

D.4

b2?4ac?0,故:选项①错误;(2)由

?1时,y抛?a?b?c,

抛物线与直线有两个交点,?图象可知,抛物线与直线有一个交点的横坐标为1,即:当xy直线?k,则:a?b?c?k,故:选项②正确;(3)

?y?ax2?bx?c?方程ax2?bx?c?kx一定有两方程组?有两组不相等的实数解,

?y?kx个不相等的实数根;故:选项③正确;(4)

ax2?(b?k)x?c?0,

?ax2?bx?c?kx,当1?x?3时,函数y?ax2?bx?c的函数值小于函

数y?kx的函数值,?当1?x?3时,ax2?bx?c?kx,即:当1?x?3时,

ax2?(b?k)x?c?0,故:选项④正确.

二、填空题(本大题共6个小题,每小题3分,共18分)

11.已知关于x的一元二次方程x2-3mx+4=0的一个根是1,则m=___________ 【答案】2

【解答】依题意,得2?1?3m?1?4?0,即22?3m?4?0,解得,m?2.