土力学课后习题标准答案(清华大学出版社) 下载本文

第二章

2-1解:

根据渗流连续原理,流经三种土样的渗透速度v应相等,即vA?vB?vC 根据达西定律,得:RA?h?hA?h?RBB?RCC LALBLC??hA:?hB:?hC?1:2:4

?hA??hB??hC?35cm

??hA?5cm,?hB?10cm,?hC?20cm

V?kA?hA?1*10?3cm/s LAV加水?V*A*t=0.1cm3

2-2解:

icr?Gs?12.70?1??1.076 1?e1?0.58?h20?1*9.8*?6.53N L302-3解:

(1)土样单位体积所受的渗透力j?1*rw(2)icr?Gs?12.72?1??1.055 1?e1?0.63?h20i???0.667

L30i?icr 则土体处于稳定状态,不会发生流土现象

(3)当i?icr时,会发生流土破坏,即h?icr时 Lh?L*icr?30*1.055?31.65cm

水头差值为32cm时就可使土样发生流土破坏 2-4解:

(1)hA?6m,hC?7.5m,hB?hA?hC?6.75m 2rw*?h?3.675kN/m3 l?h?0.625 (2)若要保持水深1m,i?Lj?rw*i?而Q?Akv?20*10*1.5*10*0.625?1.875*10m/s

?8?635 / 22

故单位时间内抽水量为1.875*10m/s 2-5:解:

?63Gs?eG?eG?1?w?s,而icr?s 1?e1?e1?eG?e?(1?e)Gs?e?icr?s??1??sat?1

1?e1?e?sat?又

?sat粘土??sat砂层,故只考虑?sat粘土就可以

icr??sat粘土?1?2.04?1?1.04g/cm3

?h7.5?(h?3)4.5?h?? L33则h?1.38

icr?故开挖深度为6m时,基坑中水深至少1.38m才能防止发生流土现象 2-6:解:

(1)地基中渗透流速最大的不为在等势线最密集处,故在第二根流线上

?H?H(5?1)m???0.267m Nn?116?1?h0.267i???0.4

L0.667?h?v?ki?1*103*0.4?4*104cm/s

(2)i均??h0.267??0.1068 L均2.5icr??sat?1?2?1?1

则i均?icr 故地基土处于稳定状态

(3)q?M?q?Mk?h?5*1*10*0.267?1.335*10m/s 2-7:解:

(1)?H?3.6m,?h??5?52?H3.6??0.257m 1414q?M?q?Mk?h?6*1.8*10?4*0.257?2.776*10?4m3/s?1.666*10?2m3/min

(2)icr?r?rsat18.5??1??1?0.888 rwrw9.8i??h0.257??0.514,故i?icr,不可能发生流土破坏 L0.5i0.888Fs?cr??1.73

i0.5146 / 22

第三章 土体中的应力计算

3-1:解:

41.0m:?s1??1H1?1.70*10*3?51kpa

40.0m:?s2??s1??2H2?51?(1.90?1.0)*10*1?60kpa 38.0m:?s3??s2??3H3?60?(1.85?1.0)*10*2?77kpa 35.0m:?s4??s3??4H4?77?(2.0?1.0)*10*3?107kpa 水位降低到35.0m 41.0m:?s1?51kpa

40.0m:?s2??s1??2H2?51?1.90*10*1?70kpa 38.0m:?s3??s2??3H3?70?1.85*10*1?88.5kpa 35.0m:?s4??s3??4H4?88.5?1.82*10*3?143.1kpa 3-2:解: 偏心受压:

e?0.2mp6e7006*0.2pmax?(1?)?(1?)?78.4kN

BB1010pmin?61.6kN由于是中点,故Fs???Hcos?tan??Fc?1.097

??Hsin??J61.6 σ 61.5384 61.4152 60.2448 54.2696 46.5696 39.5472 33.8184 29.4448 25.872 18.8496 三角形荷载p K 0.5 0.498 0.498 0.441 0.378 0.321 0.275 0.239 0.21 0.153 16.8 σ 8.4 8.3664 8.3664 7.4088 6.3504 5.3928 4.62 4.0152 3.528 2.5704 水平附总附加加应力 应力σ(kPa) 0 69.9384 0 69.7816 0 68.6112 0 61.6784 0 52.92 0 44.94 0 38.4384 0 33.46 0 29.4 0 21.42 z(m) n=z/B 均布荷载p= K 0.1 0.01 0.999 1 0.1 0.997 2 0.2 0.978 4 0.4 0.881 6 0.6 0.756 8 0.8 0.642 10 1 0.549 12 1.2 0.478 14 1.4 0.42 20 2 0.306 3-3:解: 7 / 22

(1)

可将矩形分为上下两部分,则为2者叠加

Lzm?,n?,查表得K,?zo?2K*?

BB(2)

可将该题视为求解条形基础中线下附加应力分布,上部荷载为50kN/m2的均布荷载与100 kN/m2的三角形荷载叠加而成。 3-4:解:

只考虑B的影响:

用角点法可分为4部分,

m1?L1z?1.5,n1??0.5,得K1?0.2373 B1B1L2z?3,n2??1,得K2?0.2034 B2B2L3z?2,n3??1,得K3?0.1999 B3B3L4z?1,n4??1,得K4?0.1752 B4B4m2?m3?m4??z?(K1?K2?K3?K4)??2.76kN/m2

只考虑A:为三角形荷载与均布荷载叠加

m?1,n?1, K1?0.1752,?z1?K1?1?0.1752*100?17.52kN/m2

K2?0.0666,?z2?K2?2?0.066*100?6.6kN/m2

?z??z1??z2?24.12kN/m2

则?z总?2.76?24.12?26.88kN/m2 3-6:解:

(1)不考虑毛细管升高: 深度z(m) σ(kN/m2) 0.5 16.8*0.5=8.4 2 16.8*2=33.6 4 33.6+19.4*2=72.4 8(上) 72.4+20.4*4=154 8(下) 72.4+20.4*4=154 12 154+19.4*4=231.6 (2)毛细管升高1.5m 深度z(m) σ(kN/m2) u(kN/m2) 0 0 2*9.8=19.6 6*9.8=58.8 10*9.8=98 14*9.8=137.2 u(kN/m2) 8 / 22

σ'(kN/m2) 8.4 33.6 52.8 95.2 56 94.4 σ'(kN/m2)