,.
2018年浙江省丽水市中考数学试卷(解析版)
一、一、选择题(共10题;共20分)
1.在0,1,
,?1四个数中,最小的数是( )
D. ?1
,即-1是最小的数.故
A. 0 B. 1 C. 【解析】【解答】解: 答案为:D。
,
,
【分析】这些都是有理数,有正数和负数,0时,比较有理数的大小,一般有两种方法:一是根据比较有理数大小的规则;二是根据有理数在数轴上的位置,数轴上右边的数总比左边的数大 2.计算
结果正确的是( )
C.
D.
A. B. 【解析】【解答】解:
,故答案为:B。
=
,则可用同底数幂的除法法则计算即可。
【分析】考查同底数幂的除法法则;
3.如图,∠B的同位角可以是( )
A. ∠1 B. ∠2 C. ∠3 D. ∠4 【解析】【解答】解:直线DE和直线BC被直线AB所截成的∠ B与∠ 4构成同位角,故答案为:D 【分析】考查同位角的定义;需要找一个角与∠ B构造的形状类似于“F” 4.若分式
的值为0,则x的值是( )
C. 3或 的值为0,则
,解得
D. 0
.故答案为:A.
A. 3 B. 【解析】【解答】解:若分式
【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.
,.
5.一个几何体的三视图如图所示,该几何体是( )
A. 直三棱柱 B. 长方体 C. 圆锥 D. 立方体 【解析】【解答】主视图是三角形的几何图形可能是直三棱柱和圆锥,左视图是长方形的,也只有直三棱柱,故答案为:A。
【分析】考查由简单几何图形的三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除.其中,主视图是三角形的可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形的形状。
6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,
指针停止后落在黄色区域的概率是( )
A. B. C. D. 【解析】【解答】解:P(指针停止后落在黄色区域)= 【分析】角度占360°的比例,即为指针转到该区域的概率。
,故答案为:B。
7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是( )
A. (5,30) B. (8,10) C. (9,10) D. (10,10)
,.
【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为
,即横坐标为9,∴点P(9,10),故答案为:C。
【分析】在直角坐标系中确定点的坐标,即要确定该点的横、纵坐标,或者求出该点到x轴,y轴的距离,再根据该点所在的象限,得到该点的坐标;根据图中所给的数据,可分别求出点P到x轴,y轴的距离,又点P在第一象限,即可得出。
8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α , ∠ADC=β , 则竹竿AB与AD的长度
之比为( )
A. B. C. D.
【解析】【解答】解:设AC=x, 在Rt△ABC中,AB= 在Rt△ACD中,AD=
. ,
则
故答案为:B。
,
【分析】求AB与AD的比,就不必就求AB和AD的具体的长度,不妨设AB=x,用含x的代数式分别表示出AB,AD的长,再求比。
9.如图, 若点A , D , E在同一条直线上,∠ACB=20°将△ABC绕点C顺时针旋转90°得到△EDC .,
则∠ADC的度数是( )
A. 55° B. 60° C. 65° D. 70° 【解析】【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC . ∴∠ACE=90°,AC=CE , ∴∠E=45°,
,.
∵∠ADC是△CDE的外角,
∴∠ADC=∠E+∠DCE=45°+20°=65°, 故答案为:C。
【分析】根据旋转的性质可知,旋转前后的两个图形是全等的,并且对应边的旋转角的度数是一样的。则∠ACE=90°,AC=CE , ∠DCE=∠ACB=20°,可求出∠E的度数,根据外角的性质可求得∠ADC的度数 10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )
A. 每月上网时间不足25 h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多
C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱 【解析】【解答】解:A方式:当0 ,则 解得 ,则yA=3x-45,则 。 ,则 B方式:当0 解得 C方式:yC=120. ,则yB=3x-100,则 。 A. 每月上网时间不足25 h时,即x<25时,yA=30,yB=50,yC=120,因为30<50<120,所以选择A方式最省钱,判断正确,故本选项不符合题意; B. 每月上网费用为60元时,对于 ,则60=3x-45,解得x=35;对于 ,则60=3x-100,解得x= 式多,判断正确,故本选项不符合题意; ,因为35< ,所以B方式可上网的时间比A方 C.每月上网时间为35h时,与A同理,求得yA=3×35-45=60(元),yB=50(元),yC=120,选择B方式最省钱,判断正确,故本选项不符合题意; ,. D.每月上网时间超过70h时,即当x≥70时,yA≥3×70-45=165(元),yB≥3×70-100=110(元),yC=120,选择B方式最省钱,故判断错误,故本选项符合题意; 故答案为:D。 【分析】做此题可运用解析法并结合图象灵活解题。根据图象可发现A、B、C这三种方式的图象是直直的线,是一次函数的图象,所以可先求出A、B、C三种方式的表达式,根据不同的x取值范围;结合图象逐个判断每个选项的正误 二、填空题(共6题;共7分) 11.化简 故答案为: 计算。 的结果是________. 【解析】【解答】解: 【分析】运用平方差分式 12.如图,△ABC的两条高AD , BE相交于点F , 请添加一个条件,使得△ADC≌△BEC(不添加其 他字母及辅助线),你添加的条件是________. 【解析】【解答】从题中不难得出∠ADC=∠BEC=90°,而且∠ACD=∠BCE(公共角),则只需要加一个对应边相等的条件即可,所以从“CA=CB,CE=CD,BE=AD”中添加一个即可。 故答案为:CA=CB,CE=CD(答案不唯一)。 【分析】判断两个三角形全等,判定定理有“AAS,SSS,SAS,ASA,HL”, 只需要添加一个条件,那么就要从题目中找出其他两个条件, 再根据判定定理,缺什么就添什么条件。