单机—无穷大系统稳态运行实验
一、实验目的
1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。
二、原理与说明
电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。
图2 一次系统接线图
本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。
为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。
三、实验项目和方法
1.单回路稳态对称运行实验
在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。 2.双回路对称运行与单回路对称运行比较实验
按实验1的方法进行实验2的操作,只是将原来的单回线路改成双回路运行。将实验1的结果与实验2进行比较和分析。
表3-1 ? P Q I UF UZ U? ?U △U 单回路 双回路 注:UZ —中间开关站电压;
?U —输电线路的电压损耗; ?—△U 输电线路的电压降落
3.单回路稳态非全相运行实验
确定实现非全相运行的接线方式,断开一相时,与单回路稳态对称运行时相同的输送功率下比较其运行状态的变化。
具体操作方法如下:
(1)首先按双回路对称运行的接线方式(不含QF5);
(2)输送功率按实验1中单回路稳态对称运行的输送功率值一样; (3)微机保护定值整定:动作时间0秒,重合闸时间100秒; (4)在故障单元,选择单相故障相,整定故障时间为0? (5)进行单相短路故障,此时微机保护切除故障相,准备重合闸,这时迅速跳开“QF1”、“QF3”开关,即只有一回线路的两相在运行。观察此状态下的三相电流、电压值与实验1进行比较; (6)故障100?以后,重合闸成功,系统恢复到实验1状态。 表3-2 全相运行值 非全相运行值 UA UB UC IA IB IC P Q S 四、实验报告要求 1.整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析。 2.根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。 3.比较非全相运行实验的前、后实验数据,分析输电线路输送功率的变化。 五、思考题 1. 影响简单系统静态稳定性的因素是哪些? 2. 提高电力系统静态稳定有哪些措施? 3. 何为电压损耗、电压降落? 4. “两表法”测量三相功率的原理是什么?它有什么前提条件?