解决问题(外方内圆 外圆内方) 下载本文

外方内圆和外圆内方教学设计

教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。 教学目标:

1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。

2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。

3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。

教学重点:掌握计算组合图形面积的方法,并能准确计算。 教学难点:对组合图形进行分析。 教学准备:课件、学具、作业纸。 教学过程:

一、创设情景,谈话引入

1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。

2.课件展示:鸟巢和水立方等建筑,精美的雕窗。

【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。 二、探究新知,解决问题

1.实践操作(课件出示教材例3中的雕窗插图) 师:谁能说说这两种设计有什么联系和区别?

预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。 师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。 预设2:都是由圆和正方形这两个图形组成的。

师:也就是我们以前学过的什么图形?(组合图形)你能动手用学具组合出这两个图形吗?

或者动手画画这两个图形吗? 学生操作,作品展示。

【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。 2.解决问题 (1)阅读与理解

师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。 预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。 预设2:需要知道正方形的边长和圆的半径。

师:只告诉你这两个圆的半径都是1厘米,你能计算出这两部分的面积吗? 学生思考,尝试练习。 (2)分析与解答

师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?

预设:正方形的面积是2×2=4(cm),减去圆的面积(3.14 cm),等于0.86 cm2。 师:你是怎么知道正方形的边长的?

根据学生回答课件展示:正方形的边长=圆的直径。

师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢? (小组讨论,汇报交流)

预设1:可以把右图中的正方形看成两个三角形。

追问:三角形的底和高分别是多少?相当于什么?(底是2 cm,高是1 cm,相当于圆的直径和半径。)

结合学生回答课件展示。 预设2:也可以看成四个三角形。

师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 cm,相当于圆的半径。)

师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。) 【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及图形各要素之间

的关系,自主地运用已有的知识达成问题的解决。教学过程中,注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学习的过程展示。 三、回顾反思,理解算法

师:如果两个圆的半径都是r,结果又是怎样的?结合左图我们一起来算一算。 左图:。 师:像这样,你能计算出右图中正方形和圆之间部分的面积吗? 学生练习,反馈讲评。 右图: 。

师:我们可以把题目中的条件r=1 cm代入上述的两个结果算一算,有什么发现? 预设:和之前计算的结果完全一致。

【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过程中。 四、课堂练习,强化认识

1.右图是一面我国唐代外圆内方的铜镜。铜镜的直径是24cm。外面的圆与内部的正方形之间的面积是多少?

师:可以用怎样的方法验证结果是否正确?

【设计意图】基础练习的设计在于运用新知解决生活中的实际问题,并强调对结果进行验证的意识。

五、全课总结,畅谈收获

通过本节课的学习,你有什么收获?谁来说一说。 六、布置作业

练习十五第十题,第十六题