2016年江苏省无锡市中考数学试卷 下载本文

(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=648(人),

答:该校在上学期参加社区活动超过6次的学生有648人.

24.甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程) 【考点】列表法与树状图法. 【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.

【解答】解:根据题意画出树状图如下:

一共有4种情况,确保两局胜的有4种, 所以,P=.

25.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.

(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式; (2)分别求该公司3月,4月的利润;

(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)

【考点】一次函数的应用. 【分析】(1)设p=kx+b,,代入即可解决问题.

(2)根据利润=销售额﹣经销成本,即可解决问题.

第 11 页 共 11 页

(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题. 【解答】解:(1)设p=kx+b,,代入得

解得

∴p=x+10,.

(2)∵x=150时,p=85,∴三月份利润为150﹣85=65万元. ∵x=175时,p=97.5,∴四月份的利润为175﹣97.5=77.5万元.

(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元 ∵5月份以后的每月利润为90万元, ∴65+77.5+90(x﹣2)﹣40x≥200, ∴x≥4.75,

∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元

26.已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3

(1)求A、B两点的坐标;

(2)若tan∠PDB=,求这个二次函数的关系式.

【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式. 【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;

(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a的值,最后将A(或B)的坐标代入解析式即可求出c的值. 【解答】解:(1)过点P作PE⊥x轴于点E, ∵y=ax2﹣2ax+c,

∴该二次函数的对称轴为:x=1, ∴OE=1

∵OC∥BD,

∴CP:PD=OE:EB, ∴OE:EB=2:3,

第 12 页 共 12 页

∴EB=, ∴OB=OE+EB=, ∴B(,0)

∵A与B关于直线x=1对称, ∴A(﹣,0);

(2)过点C作CF⊥BD于点F,交PE于点G, 令x=1代入y=ax2﹣2ax+c, ∴y=c﹣a,

令x=0代入y=ax2﹣2ax+c, ∴y=c ∴PG=a, ∵CF=OB=, ∴tan∠PDB=

∴FD=2, ∵PG∥BD

∴△CPG∽△CDF, ∴

=

=

∴PG=, ∴a=,

∴y=x2﹣x+c,

把A(﹣,0)代入y=x2﹣x+c, ∴解得:c=﹣1,

∴该二次函数解析式为:y=x2﹣x﹣1.

第 13 页 共 13 页

27.如图,已知?ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作?ABCD关于直线AD的对称图形AB1C1D

(1)若m=3,试求四边形CC1B1B面积S的最大值; (2)若点B1恰好落在y轴上,试求的值.

【考点】坐标与图形性质;勾股定理;相似三角形的判定与性质. 【分析】(1)如图1,易证S?BCEF=S?BCDA=S?B1C1DA=S?B1C1EF,从而可得S?BCC1B1=2S?BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;

(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题. 【解答】解:(1)如图1,

∵?ABCD与四边形AB1C1D关于直线AD对称,

∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF, ∴BC∥AD∥B1C1,CC1∥BB1,

第 14 页 共 14 页

∴四边形BCEF、B1C1EF是平行四边形, ∴S?BCEF=S?BCDA=S?B1C1DA=S?B1C1EF, ∴S?BCC1B1=2S?BCDA. ∵A(n,0)、B(m,0)、D(0,2n)、m=3, ∴AB=m﹣n=3﹣n,OD=2n,

∴S?BCDA=AB?OD=(3﹣n)?2n=﹣2(n2﹣3n)=﹣2(n﹣)2+, ∴S?BCC1B1=2S?BCDA=﹣4(n﹣)2+9. ∵﹣4<0,∴当n=时,S?BCC1B1最大值为9;

(2)当点B1恰好落在y轴上,如图2, ∵DF⊥BB1,DB1⊥OB,

∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°, ∴∠B1DF=∠OBB1. ∵∠DOA=∠BOB1=90°, ∴△AOD∽△B1OB, ∴

=

∴=,

∴OB1=.

由轴对称的性质可得AB1=AB=m﹣n. 在Rt△AOB1中, n2+()2=(m﹣n)2, 整理得3m2﹣8mn=0. ∵m>0,∴3m﹣8n=0, ∴=.

第 15 页 共 15 页