.word格式. 对应训练 2.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4. (1)如果[a]=-2,那么a的取值范围是 . (2)如果[x?1]=3,求满足条件的所有正整数x. 2考点三:探索题型中的新定义 例3定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A.2 对应训练 3.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”. (1)请用直尺和圆规画一个“好玩三角形”; (2)如图在Rt△ABC中,∠C=90°,tanA= B.3
C.4
D.5
3,求证:△ABC是“好玩三角形”; 2(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s. . 专业资料. 学习参考 .
.word格式. ①当β=45°时,若△APQ是“好玩三角形”,试求a的值; s②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围. (4)(本小题为选做题,作对另加2分,但全卷满分不超过150分) 依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1) . 考点四:开放题型中的新定义 例4若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形. . 专业资料. 学习参考 . .word格式. (1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线; (2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形; (3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数. . . 对应训练 4.用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=1a+b-1(史称“皮克公式”). 2. 专业资料. 学习参考 .
.word格式. 小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形: 根据图中提供的信息填表: 格点多边形各边 上的格点的个数 部的格点个数 积 格点边多边形内格点多边形的面多边形1 8 1 多边形2 7 3 … … … … 一般格点多边形 a b S 则S与a、b之间的关系为S= (用含a、b的代数式表示). 4.解:填表如下: 格点多边形各边 上的格点的个数 部的格点个数 积 格点边多边形内格点多边形的面多边形1 8 1 8 多边形2 7 3 11 … … … … . 专业资料. 学习参考 .