.word格式.
(1)求证:点D是线段AC的黄金分割点; (2)求出线段AD的长.
11.对于钝角α,定义它的三角函数值如下: sinα=sin(180°-α),cosα=-cos(180°-α) (1)求sin120°,cos120°,sin150°的值;
(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.
综上所述:m=0,∠A=30°,∠B=120°.
12.我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.
. 专业资料. 学习参考 .
.word格式. (1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可); (2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证: ABBE; ?DCEC(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由) 13.对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D((1)当⊙O的半径为1时, ①在点D、E、F中,⊙O的关联点是 . ②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O的关联点,求m的取值范围; (2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围. 11,),E(0,-2),F(23,0). 22. 专业资料. 学习参考 .
.word格式.
. 专业资料. 学习参考
.
.word格式.
专题三 开放型问题
一、中考专题诠释
开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类. 二、解题策略与解法精讲
解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲 考点一:条件开放型
条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.
例1写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式: .(填上一个答案即可) 对应训练
1.(2013?达州)已知(x1,y1),(x2,y2)为反比例函数y?k图象上的点,当x1<x2<0时,xy1<y2,则k的一个值可为 .(只需写出符合条件的一个k的值) 1.-1 考点二:结论开放型: 给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类
. 专业资料. 学习参考 .