最新整理初中数学竞赛专题讲解及练习题分析第18项之圆的基本性质 下载本文

第十八讲 圆的基本性质

到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.

圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:

1.熟练运用垂径定理及推论进行计算和证明; 2.了解弧的特性及中介作用;

3.善于促成同圆或等圆中不同名称等量关系的转化.

熟悉如下基本图形、基本结论:

【例题求解】

【例1】在半径为1的⊙O中,弦AB、AC的长分别为3和2,则∠BAC度数为 .

作出辅助线,解直角三角形,注意AB与AC有不同的位置关系.

注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.

圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性. 【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( ) A.2 B.

51755 C. D.

1642

思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.

⌒ ⌒

【例3】 如图,已知点A、B、C、D顺次在⊙O上,AB=BD,BM⊥AC于M,求证:AM=DC+CM.

思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.

【例4】 如图甲,⊙O的直径为AB,过半径OA的中点G作弦C E⊥AB,在CB上取一点D,分别作直线CD、ED,交直线AB于点F,M. (1)求∠COA和∠FDM的度数; (2)求证:△FDM∽△COM;

(3)如图乙,若将垂足G改取为半径OB上任意一点,点D改取在EB上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否有△FDM∽△COM? 证明你的结论.

思路点拨 (1)在Rt△COG中,利用OG=OA=OC;(2)证明∠COM=∠FDM,∠CMO=

∠FMD;(3)利用图甲的启示思考.

1212