浙教版2018届中考数学专题复习七图形的初步认识试题 下载本文

图形的初步认识

教学准备

一. 教学目标

1. 了解线段、射线、直线的区别与联系.掌握它们的表示方法.

2. 掌握“两点确定一条直线”的性质,了解“两条直线相交只有一个交点”.

3. 理解线段的和与差的概念,会比较线段的大小,理解“两点之间线段最短”的性质. 4. 理解线段的中点和两点间距离的概念. 5. 会用尺规作图作一条线段等于已知线段.

6. 理解角的概念,理解平角、直角、周角、锐角、钝角的概念. 7. 掌握度、分、秒的换算,会计算角度的和、差、倍、分. 8. 掌握角的平分线的概念,会画角的平分线.

9. 会解决有关余角、补角的计算问题;会用“同角或等角的余角相等、同角或等角的补角相等”进行推理.

10. 灵活运用对顶角和垂线的性质;

11. 掌握并灵活运用平行线的性质和判定进行有关的推理和计算; 12. 理解和识别方向角

13. 建立初步的空间观念,会判断简单物体的三视图, 14. 了解旋转体和多面体的概念.

15. 会计算圆柱、圆锥的侧面展开图的面积. 二. 教学重点、难点:

会画基本几何体(立方体、圆柱、圆锥、球)的三视图.能根据三视图描述基本几何体或实物原型.会解决有关余角、补角的计算. 三. 知识要点:

知识点1、生活中的立体图形

1. 生活中的常见立体图形有:球体、柱体、锥体,它们之间的关系如下所示

??圆柱???三棱柱??柱体???棱柱?四棱柱???五棱柱??????圆锥????三棱锥 ??立体图形?锥体??棱锥?四棱锥???五棱锥??????球体??????2. 多面体:由平面围成的立体图形叫做多面体 知识点2、由立体图形到视图

1. 视图:(1)直棱柱、圆柱、圆锥、球的三视图(主视图、左视图、俯视图) (2)简单的几何体与其三视图、展开图 (3)由三视图猜想物体的形状

2. 通过典型实例,知道这种关系在现实生活中的应用(如物体的包装).

1

俯视图反映物体的长和宽,主视图反映了它的长和高,左视图反映了宽和高.所以主视图和俯视图的长度相等,且互相对正,即“长对正”主视图与左视图的高度相等,且互相平齐,即“高平齐”俯视图与左视图的宽度相等,即“宽相等”

知识点3、立体图形的展开图

圆柱的侧面展开图是一个矩形,一边长为母线的长,另一边是底面的周长.

圆锥的侧面展开图是一个扇形,其中扇形的半径是圆锥的母线长,弧长是底面圆的周长 正方形的展开图的形状比较多 知识点4、平行投影和中心投影

平行投影:在平行光线的照射下,物体所产生的影称为平行投影. 1. 在平行光线的照射下,不同物体的物高与影长成比例. 2. 物体在阳光下的影长与方向随时间的变化而变化 3. 太阳光可以看作是一束平行光线

中心投影:在点光源的照射下,物体所产生的影称为中心投影. 1. 在点光源的照射下,不同物体的物高与影长不成比例.

2. 在灯光下,不同位置的物体,影子的长短和方向都是不同的,但是任何物体上的一点与其影子的对应点的连线一定经过光源所在的点.

知识点5、线段、射线、直线

(1)连接两点的所有线中,线段最短.

线段的垂直平分线上的点到这条线段的两端的距离相等 (2)射线、线段可以看作直线的一部分 知识点6、角

由公共端点的两条射线所组成的图形叫做角 1周角=2平角=4直角=360度

互余和互补:如果两个角之和是一个直角,那么这两个角互余 如果两个角之和是一个平角,那么这两个角互补 知识点7、垂直

(1)两条直线相交的四个角中有一个为直角时,称这两条直线互相垂直,交点叫垂足. (2)在同一平面内,经过直线外(上)一点,有且只有一条直线与已知直线垂直. (3)直线外这个点到垂足间的线段叫做点到直线的距离. 知识点8、平行线

1. 平行线:在同一平面内,不相交的两条直线.

2. 两条直线被第三条直线所截,出现的三种角:同位角,内错角,同旁内角. 直线m截直线a,b成如图所示的8个角,在图中:

同位角:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8;

2

内错角:∠3和∠5,∠4和∠6; 同旁内角:∠3和∠6,∠4和∠5.

3. 平行公理 经过已知直线外一点有且只有一条直线与已知直线平行. 4. 平行线的判定方法:

同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行. 另外,平行于同一直线的两条直线互相平行.垂直于同一直线的两条直线互相平行. 5. 平行线的性质:

两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补. 过直线外一点有且仅有一条直线平行于已知直线.

例题精讲

例1. 判断正误,并说明理由

①两条直线如果有两个公共点,那么它们就有无数个公共点; ( ) ②射线AP与射线PA的公共部分是线段PA; ③有公共端点的两条射线叫做角; ④互补的角就是平角;

⑤经过三点中的每两个画直线,共可以画三条直线; ⑥连结两点的线段,叫做这两点间的距离; ⑦角的边的长短,决定了角的大小;

⑧互余且相等的两个角都是45°的角; ⑨若两个角互补,则其中一定有一个角是钝角; ⑩大于直角的角叫做钝角. 解:①√.因为两点确定唯一的直线. ②√,因为线段是射线的一部分.如图:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

显然这句话是正确的.

③×,因为角是有公共端点的两条射线组成的图形.

④×.互补两角的和是180°,平角为180°.就量上来说,两者是相同的,但从“形”上说,互补两角不一定有公共顶点,故不一定组成平角.如下图

⑤×.平面内三点可以在同一条直线上,也可以不在同一条直线上. ⑥×.连结两点的线段的长度,叫做这两点的距离.

⑦×.角的大小,与组成角的两条射线张开的程度相关,或者说与射线绕着它的端点旋转过的平面部分的大小相关,与角的边画出部分的长短无关.

⑧√,“互余”即两角和为90°.

3