什么是几何直观
——对几何直观的认识与思考(七)
关于几何直观,课标在第一部分前言的“课程设计思路”中描述了其定义,阐发了其价值与作用:几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。可以说,这段话是目前理解几何直观的最重要依据。
数学课程标准(2011版)解读第92页—95页对几何直观的认识中指出:几何直观,顾名思义,所指有两点:一是几何,在这里几何是指图形;二是直观,这里的直观不仅仅是指直接看到的东西,更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来,它在本质上是一种通过图形所展开的想象力。用最通俗的话说几何直观,它不仅是看到了什么?而是通过看到的图形思考到了什么?想象到了什么?直白点就是看图想事,看图说理,也包括想图、画图、表达想法。利几何直观在小学数学中的运用
2011年版课标指出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”教师在理解几何直观的过程中,要注意以下几个问题:第一,几何直观指的是通过“几何”的手段,达到“直观”的目的,实现“描述和分析问题”的目标。这里的“几何”手段主要是指“利用图形”,“直观”的目的主要是将“复杂、抽象的问题变得简明、形象”。因此,几何直观对学生而言是一种有效的学习方法,对教师而言是一种有效的教学手段,它是数形结合思想的体现,在整个数学学习过程中发挥着重要作用。第二,几何直观所利用的“图形”主要是指点、线、面、体以及由以上四要素组成的其他几何图形,在小学阶段主要有正方形、长方形、三角形、平等四边形、梯形、圆以及线段、直线、射线等。几何直观所要描述和分析的问题,不仅可以是生活问题,而且可以是数学问题。第三,几何直观的意义和价值主要体现在三个方面:一是有助于把复杂、抽象的问题变得简明、形象,二是有助于探索解决问题的思路并预测结果,三是有助于帮助学生直观地理解数学。
因此,教师要善于在教学中利用几何直观,将复杂、抽象的问题变得简明、形象,帮助学生探索解决问题的思路,帮助学生直观地理解数学。如在教学“数的认识”时,教师要帮助学生利用圆形、三角形、正方形或长方形等纸片,直观理解数量和数的意义;在教学“解决复杂数量关系的问题”时,要善于利用线段图等描述和分析问题中的数量关系;在解决“鸡兔同笼”等问题时,要重视通过列表分析解决问题;在探索事件发生的变化规律时,要重视利用统计图表帮助学生直观感受事件发生的变化规律并预测结果;在探索函数关系的变化规律时,要重视利用表格、图像进行描述和分析等。 用图形进行数学的思考和想象。
几何直观在小学数学中的运用
2011年版课标指出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”教师在理解几何直观的过程中,要注意以下几个问题:第一,几何直观指的是通过“几何”的手段,达到“直观”的目的,实现“描述和分析问题”的目标。这里的“几何”手段主要是指“利用图形”,“直观”的目的主要是将“复杂、抽象的问题变得简明、形象”。因此,几何直观对学生而言是一种有效的学习方法,对教师而言是一种有效的教学手段,它是数形结合思想的体现,在整个数学学习过
程中发挥着重要作用。第二,几何直观所利用的“图形”主要是指点、线、面、体以及由以上四要素组成的其他几何图形,在小学阶段主要有正方形、长方形、三角形、平等四边形、梯形、圆以及线段、直线、射线等。几何直观所要描述和分析的问题,不仅可以是生活问题,而且可以是数学问题。第三,几何直观的意义和价值主要体现在三个方面:一是有助于把复杂、抽象的问题变得简明、形象,二是有助于探索解决问题的思路并预测结果,三是有助于帮助学生直观地理解数学。
因此,教师要善于在教学中利用几何直观,将复杂、抽象的问题变得简明、形象,帮助学生探索解决问题的思路,帮助学生直观地理解数学。如在教学“数的认识”时,教师要帮助学生利用圆形、三角形、正方形或长方形等纸片,直观理解数量和数的意义;在教学“解决复杂数量关系的问题”时,要善于利用线段图等描述和分析问题中的数量关系;在解决“鸡兔同笼”等问题时,要重视通过列表分析解决问题;在探索事件发生的变化规律时,要重视利用统计图表帮助学生直观感受事件发生的变化规律并预测结果;在探索函数关系的变化规律时,要重视利用表格、图像进行描述和分析等。
几何直观在小学数学教学中的运用
小学生的思维水平止处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。几何直观凭借图形的直观性特点将抽象的数学语言与直观的图形语言有机地结合起来,抽象思维同形象思维结合起来,充分展现问题的本质,能够帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点。
(一)以图连线—搭建桥梁,沟通联系
“在传统领域之间界限的日趋消失是现代数学的特性之一,而几何直观在其间起着联络作用。”某些问题的信息之间,某个知识块之间,代数与几何之间,几何直观使复杂多样的分类变得简单明了。比如俞止强老师的讲座中提到这样个例子:生说自然数就像条射线,它们都有个起点,没有终点,可以无限延长。这位学生惊人的发现无不体现了知识间是相通的,把代数中的自然数概念和空间形式联系起来,不但缩短了知识间的距离,而且还减少记忆容量。
(二)以图促思—渗透数形结合思想
“数无形不直观,形无数难入微”,“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。 利用直观的图形,学生能积极地思考图中正方形的面积的变化和算式之间的联系。在此基础上用数学式子表达它的规律。从而发现;n个奇数相加的和等于n×n;再如,教学“连除两步计算问题”时,学校图书室买来200本新书,放在2个书架上,每个书架有4层。平均每层放了多少本书?最初可以出示书架的实物模刑,逐步用长方形的图示代替来说明解决问题的过程。①先算每个书架放了几本?②先算两个书架共有几层?③先算两个书架的一层共放几本书?以数形结合的方式帮助学生感悟用连除两步计算解决问题的数学本质。借助“形”的直观,能促进小学生形成从“数”和“形”的角度把“数和形”结合起来考虑问题的意识,有机渗透数形结合是一种重要的数学思想。
(三)以图求解—有助于数学方法的再创造
直观是抽象思维问题的信息源,又是途径信息源,它不仅为抽象思维提供信息,而且由
于直观形象在认知结构中鲜明性强,可以多思路、反复地给抽象思维以技巧。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。直观图形的使用,不但可以帮助学生发现并理解数学结论,而且有利于掌握数学发现的方法,有利于培养学生的观察能力和空间观念。 借助几何直观进行教学,可以形象生动地展现问题的本质,有助于促进学生的数学理解,有机渗透数学思想方法的同时,提高学生的思维能力和解决问题的能力。
培养几何能力的教学思考
《全日制义务教育数学课程标准(修改稿)》提出:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。几何直观主要是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。《普通高中数学课程标准》也提出要培养和发展学生的几何直观能力以及借助几何直观进行推理论证的能力。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。在小学数学教学中,教师应该选择适当的教学内容,培养学生几何直观的能力。
一、对几何直观的本质把握
数学家克莱因认为:“数学的直观是对概念、证明的直接把握”。蒋文蔚先生指出,几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态。(《数学教育学报》,1997年第4期)徐利治先生提出,直观就是借助于经验、观察、测试或类比联想,所产生的对事物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。换言之,通过直观能够建立起人对自身体验与外物体验的对应关系。
这些数学家对直观包括几何直观下了定义。综合这些定义,我们认为直观要体现两点:一是透过现象看本质;二是一眼能看出不同事物之间的关联。直观是一种感知,一种有洞察力的定势。几何直观是利用图形洞察问题本质的一种方式,既有形象思维的特点,又有抽象思维的特点。
二、培养几何直观能力的教学方法
在小学数学中培养学生的几何直观能力,要先从直观教学开始,引导学生学会用画图的策略分析题意,解决简单的实际问题,逐步上升到能将直观图与数学语言、符号语言进行合情转换,并逐步在解决数学问题的过程中渗透数形结合思想,感悟数与形、形与数之间的转化。
1.重视直观感知,突出画图策略的教学。
苏教版四年级(下册)《解决问题的策略》主要教学用画直观示意图的方法解决有关面积计算的实际问题。在教学面积计算的问题时,关键要使学生想到画图、正确画图、用图分析和体验画图解决问题的好处。首先可以向学生呈现纯文字的例题,面对比较复杂的数学问题,引导学生想到用画图的方法整理条件和问题。接着鼓励学生尝试画草图,让学生的思维集中