2.2.2 ¶ÔÊýº¯Êý¼°ÆäÐÔÖÊ µÚ2¿Îʱ ¶ÔÊýº¯Êý¼°ÆäÐÔÖʵÄÓ¦ÓÃ
A¼¶ »ù´¡¹®¹Ì
Ò»¡¢Ñ¡ÔñÌâ
?1?1£®Èôlog3a>0£¬??<1£¬Ôò( ) ?3?
A£®a>1£¬b>0 C£®a>1£¬b<0
B£®00 D£®0 b?1?½âÎö£ºÓɺ¯Êýy£½log3x£¬y£½??µÄͼÏóÖª£¬a>1£¬b>0. ?3? ´ð°¸£ºA 2£®ÒÑÖª¶ÔÊýº¯Êýy£½logax(a>0£¬ÇÒa¡Ù1)£¬ÇÒ¹ýµã(9£¬2)£¬f(x)µÄ·´º¯Êý¼ÇΪy£½g(x)£¬Ôòg(x)µÄ½âÎöʽÊÇ( ) A£®g(x)£½4 C£®g(x)£½9 2 xxB£®g(x)£½2 D£®g(x)£½3 xxx½âÎö£ºÓÉÌâÒâµÃ£ºloga9£½2£¬¼´a£½9£¬ÓÖÒòΪa>0£¬ËùÒÔa£½3.Òò´Ëf(x)£½log3x£¬ËùÒÔf(x)µÄ·´º¯ÊýΪg(x)£½3. ´ð°¸£ºD 3£®ÏÂÁк¯ÊýÖУ¬ÔÚ(0£¬2)ÉÏΪÔöº¯ÊýµÄÊÇ( ) A£®y£½log1(x£«1) 21 C£®y£½log2 B£®y£½log2x£1 12 2 xxD£®y£½log(x£4x£«5) 2 ½âÎö£ºÑ¡Ïî A£¬CÖк¯ÊýΪ¼õº¯Êý£¬(0£¬2)²»ÊÇÑ¡ÏîBÖк¯ÊýµÄ¶¨ÒåÓò£®Ñ¡ÏîDÖУ¬º¯Êýy£½x£4x£«5ÔÚ(0£¬2)ÉÏΪ¼õº¯Êý£¬ÓÖº¯Êý£® ´ð°¸£ºD 1£x4£®ÒÑÖªº¯Êýf(x)£½lg£¬Èôf(a)£½b£¬Ôòf(£a)µÈÓÚ( ) 1£«xA£®b 1C. B£®£b 1D£®£ 2 12 <1£¬¹Êy£½log 1 (x£4x£«5)ÔÚ(0£¬2)ÉÏΪÔö2 2 bb1£x?£11£«x1£x?½âÎö£ºf(£x)£½lg£½lg?£½£lg£½£f(x)£¬Ôòf(x)ÎªÆæº¯Êý£®¹Êf(£?1£x1£«x?1£«x? a)£½£f(a)£½£b. ´ð°¸£ºB 2 5£®Èôloga<1£¬ÔòaµÄȡֵ·¶Î§ÊÇ( ) 3 ?2?A.?0£¬? ?3??2?C.?£¬1? ?3? ?2?B.?£¬£«¡Þ? ?3??2?D.?0£¬?¡È(1£¬£«¡Þ) ?3? 2222 ½âÎö£ºÓÉloga<1µÃ£ºloga 3333 ?2?×ÛÉÏ¿ÉÖª£¬aµÄȡֵ·¶Î§ÊÇ?0£¬?¡È(1£¬£«¡Þ)£® ?3? ´ð°¸£ºD ¶þ¡¢Ìî¿ÕÌâ 6£®ÒÑÖªa£½log23£«log23£¬b£½log29£log2 3£¬c£½log32£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª________£® 1 3332£ ½âÎö£ºÓÉÒÑÖªµÃa£½log23£¬b£½log232£½log23>£¬c£½log32<1.¹Êa£½b>c. 222 ´ð°¸£ºa£½b>c 7£®º¯Êýy£½log2(x£2x£«3)µÄÖµÓòÊÇ________£® ½âÎö£ºÁîu£½x£2x£«3£¬Ôòu£½(x£1)£«2¡Ý2.ÒòΪº¯Êýy£½log2uÔÚ(0£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£¬ËùÒÔy¡Ýlog22£½1.ËùÒÔy¡Ê[1£¬£«¡Þ)£® ´ð°¸£º[1£¬£«¡Þ) 2 2 2 ?1?8£®ÒÑÖª¶¨ÒåÓòΪRµÄżº¯Êýf(x)ÔÚ[0£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£¬ÇÒf??£½0£¬Ôò²»µÈʽ ?2? f(log4x)<0µÄ½â¼¯ÊÇ__________________________£® 11 ½âÎö£ºÓÉÌâÒâ¿ÉÖª£¬ÓÉf(log4x)<0£¬µÃ£ 221 11 ¼´log44£ 22 ?1??? x| Èý¡¢½â´ðÌâ 9£®ÒÑÖªº¯Êýf(x)£½log2(1£x)£log2(1£«x)£® (1)Çóº¯Êýf(x)µÄ¶¨ÒåÓò£» (2)ÅжÏf(x)µÄÆæÅ¼ÐÔ£® ??1£x>0£¬½â£º(1)Ҫʹº¯ÊýÓÐÒâÒ壬Ôò?½âµÃ£1 ?1£«x>0£¬? ¹Êº¯Êýf(x)µÄ¶¨ÒåÓòΪ(£1£¬1)£® (2)ÒòΪf(£x)£½log2(1£«x)£log2(1£x)£½£f(x)£¬ ËùÒÔf(x)ÎªÆæº¯Êý£® 10£®½â²»µÈʽ£ºloga(x£4)>loga(x£2)£® x£4>x£2£¬?? ½â£º(1)µ±a>1ʱ£¬Ô²»µÈʽµÈ¼ÛÓÚ?x£4>0£¬ ??x£2>0£¬ ¸Ã²»µÈʽ×éÎ޽⣻ x£4 (2)µ±00£¬ ??x£2>0£¬ ½âµÃx>4. ËùÒÔµ±a>1ʱ£¬Ô²»µÈʽµÄ½â¼¯Îª¿Õ¼¯£» µ±0 B¼¶ ÄÜÁ¦ÌáÉý 1£®ÒÑÖªº¯Êýf(x)£½2£«a¡¤2£¬Ôò¶ÔÓÚÈÎÒâʵÊýa£¬º¯Êýf(x)²»¿ÉÄÜ( ) A£®ÊÇÆæº¯Êý B£®¼ÈÊÇÆæº¯Êý£¬ÓÖÊÇżº¯Êý C£®ÊÇżº¯Êý D£®¼È²»ÊÇÆæº¯Êý£¬ÓÖ²»ÊÇżº¯Êý ½âÎö£ºÑéÖ¤¿ÉÖª£¬µ±a£½£1ʱ£¬f(x)£½2£2£¬f(£x)£½2£2£½£f(x)£¬ËùÒÔa£½£1ʱ£¬º¯Êýf(x)ÊÇÆæº¯Êý£¬µ±a£½1ʱ£¬f(£x)£½f(x)£½2£«2£¬º¯Êýf(x)ÊÇżº¯Êý£®µ± x£xx£xx£x£xx