2016-2017ѧÄê¸ßÖÐÊýѧµÚ¶þÕ»ù±¾³õµÈº¯Êý(¢ñ)2.2-2.2.2¶ÔÊýº¯Êý¼°ÆäÐÔÖʵÚ2¿Îʱ¶ÔÊýº¯Êý¼°ÆäÐÔÖʵÄÓ¦Óà ÏÂÔØ±¾ÎÄ

2.2.2 ¶ÔÊýº¯Êý¼°ÆäÐÔÖÊ µÚ2¿Îʱ ¶ÔÊýº¯Êý¼°ÆäÐÔÖʵÄÓ¦ÓÃ

A¼¶ »ù´¡¹®¹Ì

Ò»¡¢Ñ¡ÔñÌâ

?1?1£®Èôlog3a>0£¬??<1£¬Ôò( ) ?3?

A£®a>1£¬b>0 C£®a>1£¬b<0

B£®00 D£®0

b?1?½âÎö£ºÓɺ¯Êýy£½log3x£¬y£½??µÄͼÏóÖª£¬a>1£¬b>0. ?3?

´ð°¸£ºA

2£®ÒÑÖª¶ÔÊýº¯Êýy£½logax(a>0£¬ÇÒa¡Ù1)£¬ÇÒ¹ýµã(9£¬2)£¬f(x)µÄ·´º¯Êý¼ÇΪy£½g(x)£¬Ôòg(x)µÄ½âÎöʽÊÇ( )

A£®g(x)£½4 C£®g(x)£½9

2

xxB£®g(x)£½2 D£®g(x)£½3

xxx½âÎö£ºÓÉÌâÒâµÃ£ºloga9£½2£¬¼´a£½9£¬ÓÖÒòΪa>0£¬ËùÒÔa£½3.Òò´Ëf(x)£½log3x£¬ËùÒÔf(x)µÄ·´º¯ÊýΪg(x)£½3.

´ð°¸£ºD

3£®ÏÂÁк¯ÊýÖУ¬ÔÚ(0£¬2)ÉÏΪÔöº¯ÊýµÄÊÇ( ) A£®y£½log1(x£«1)

21

C£®y£½log2 B£®y£½log2x£­1

12

2

xxD£®y£½log(x£­4x£«5)

2

½âÎö£ºÑ¡Ïî A£¬CÖк¯ÊýΪ¼õº¯Êý£¬(0£¬2)²»ÊÇÑ¡ÏîBÖк¯ÊýµÄ¶¨ÒåÓò£®Ñ¡ÏîDÖУ¬º¯Êýy£½x£­4x£«5ÔÚ(0£¬2)ÉÏΪ¼õº¯Êý£¬ÓÖº¯Êý£®

´ð°¸£ºD

1£­x4£®ÒÑÖªº¯Êýf(x)£½lg£¬Èôf(a)£½b£¬Ôòf(£­a)µÈÓÚ( )

1£«xA£®b 1C.

B£®£­b 1D£®£­

2

12

<1£¬¹Êy£½log

1

(x£­4x£«5)ÔÚ(0£¬2)ÉÏΪÔö2

2

bb1£­x?£­11£«x1£­x?½âÎö£ºf(£­x)£½lg£½lg?£½£­lg£½£­f(x)£¬Ôòf(x)ÎªÆæº¯Êý£®¹Êf(£­?1£­x1£«x?1£«x?

a)£½£­f(a)£½£­b.

´ð°¸£ºB

2

5£®Èôloga<1£¬ÔòaµÄȡֵ·¶Î§ÊÇ( )

3

?2?A.?0£¬? ?3??2?C.?£¬1? ?3?

?2?B.?£¬£«¡Þ? ?3??2?D.?0£¬?¡È(1£¬£«¡Þ) ?3?

2222

½âÎö£ºÓÉloga<1µÃ£ºloga1ʱ£¬ÓÐa>£¬¼´a>1£»µ±0

3333

?2?×ÛÉÏ¿ÉÖª£¬aµÄȡֵ·¶Î§ÊÇ?0£¬?¡È(1£¬£«¡Þ)£®

?3?

´ð°¸£ºD ¶þ¡¢Ìî¿ÕÌâ

6£®ÒÑÖªa£½log23£«log23£¬b£½log29£­log2 3£¬c£½log32£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª________£®

1

3332£­

½âÎö£ºÓÉÒÑÖªµÃa£½log23£¬b£½log232£½log23>£¬c£½log32<1.¹Êa£½b>c.

222

´ð°¸£ºa£½b>c

7£®º¯Êýy£½log2(x£­2x£«3)µÄÖµÓòÊÇ________£®

½âÎö£ºÁîu£½x£­2x£«3£¬Ôòu£½(x£­1)£«2¡Ý2.ÒòΪº¯Êýy£½log2uÔÚ(0£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£¬ËùÒÔy¡Ýlog22£½1.ËùÒÔy¡Ê[1£¬£«¡Þ)£®

´ð°¸£º[1£¬£«¡Þ)

2

2

2

?1?8£®ÒÑÖª¶¨ÒåÓòΪRµÄżº¯Êýf(x)ÔÚ[0£¬£«¡Þ)ÉÏÊÇÔöº¯Êý£¬ÇÒf??£½0£¬Ôò²»µÈʽ

?2?

f(log4x)<0µÄ½â¼¯ÊÇ__________________________£®

11

½âÎö£ºÓÉÌâÒâ¿ÉÖª£¬ÓÉf(log4x)<0£¬µÃ£­

221

11

¼´log44£­

22

?1??? x|

Èý¡¢½â´ðÌâ

9£®ÒÑÖªº¯Êýf(x)£½log2(1£­x)£­log2(1£«x)£® (1)Çóº¯Êýf(x)µÄ¶¨ÒåÓò£» (2)ÅжÏf(x)µÄÆæÅ¼ÐÔ£®

??1£­x>0£¬½â£º(1)Ҫʹº¯ÊýÓÐÒâÒ壬Ôò?½âµÃ£­1

?1£«x>0£¬?

¹Êº¯Êýf(x)µÄ¶¨ÒåÓòΪ(£­1£¬1)£®

(2)ÒòΪf(£­x)£½log2(1£«x)£­log2(1£­x)£½£­f(x)£¬ ËùÒÔf(x)ÎªÆæº¯Êý£®

10£®½â²»µÈʽ£ºloga(x£­4)>loga(x£­2)£®

x£­4>x£­2£¬??

½â£º(1)µ±a>1ʱ£¬Ô­²»µÈʽµÈ¼ÛÓÚ?x£­4>0£¬

??x£­2>0£¬

¸Ã²»µÈʽ×éÎ޽⣻

x£­4

(2)µ±00£¬

??x£­2>0£¬

½âµÃx>4.

ËùÒÔµ±a>1ʱ£¬Ô­²»µÈʽµÄ½â¼¯Îª¿Õ¼¯£» µ±0

B¼¶ ÄÜÁ¦ÌáÉý

1£®ÒÑÖªº¯Êýf(x)£½2£«a¡¤2£¬Ôò¶ÔÓÚÈÎÒâʵÊýa£¬º¯Êýf(x)²»¿ÉÄÜ( ) A£®ÊÇÆæº¯Êý

B£®¼ÈÊÇÆæº¯Êý£¬ÓÖÊÇżº¯Êý C£®ÊÇżº¯Êý

D£®¼È²»ÊÇÆæº¯Êý£¬ÓÖ²»ÊÇżº¯Êý

½âÎö£ºÑéÖ¤¿ÉÖª£¬µ±a£½£­1ʱ£¬f(x)£½2£­2£¬f(£­x)£½2£­2£½£­f(x)£¬ËùÒÔa£½£­1ʱ£¬º¯Êýf(x)ÊÇÆæº¯Êý£¬µ±a£½1ʱ£¬f(£­x)£½f(x)£½2£«2£¬º¯Êýf(x)ÊÇżº¯Êý£®µ±

x£­xx£­xx£­x£­xx