2019年湖北省十堰市中考数学试卷 下载本文

【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.

8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=

,则AE=( )

A.3

B.3

C.4

D.2

【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长. 【解答】解:连接AC,如图, ∵BA平分∠DBE, ∴∠1=∠2,

∵∠1=∠CDA,∠2=∠3, ∴∠3=∠CDA, ∴AC=AD=5, ∵AE⊥CB, ∴∠AEC=90°, ∴AE=故选:D.

=2

【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理. 9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=( ) A.50

B.60 C.62

第9页(共25页)

D.71

【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决. 【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…, ∴分母为

11

开头到分母为

1

的数有

∴第n个数为,则n=1+2+3+4+…+10+5=60, 故选:B.

【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.

10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=( )

11

个,分别为

A.﹣20

B.﹣16

C.﹣12

D.﹣8

【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.

【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示: 则△BDE≌△FDE,

∴BD=FD,BE=FE,∠DFE=∠DBE=90° 易证△ADF∽△GFE ∴

第10页(共25页)

∵A(﹣8,0),B(﹣8,4),C(0,4), ∴AB=OC=EG=4,OA=BC=8, ∵D、E在反比例函数y=的图象上, ∴E(,4)、D(﹣8,∴OG=EC=

,AD=﹣,

∴BD=4+,BE=8+

∴,

∴AF=,

2

2

2

在Rt△ADF中,由勾股定理:AD+AF=DF 即:(﹣)+2=(4+) 解得:k=﹣12 故选:C.

2

2

2

【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键. 二、填空题(本题有6个小题,每小题3分,共18分) 11.(3分)分解因式:a+2a= a(a+2) .

【分析】直接提公因式法:观察原式a+2a,找到公因式a,提出即可得出答案. 【解答】解:a+2a=a(a+2).

【点评】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.

12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为 24 .

第11页(共25页)

2

2

2

【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.

【解答】解:∵四边形ABCD是菱形, ∴AB=BC=CD=AD,BO=DO, ∵点E是BC的中点, ∴OE是△BCD的中位线, ∴CD=2OE=2×3=6,

∴菱形ABCD的周长=4×6=24; 故答案为:24.

【点评】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.

13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:

若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有 1400 人.

【分析】先根据及格人数及其对应百分比求得总人数,总人数乘以优秀对应的百分比求得其人数,继而用总人数乘以样本中优秀、良好人数所占比例. 【解答】解:∵被调查的总人数为28÷28%=100(人),

第12页(共25页)