Ä¿Ç°×îÍêÕûµÄÊý¾Ý½á¹¹1800Ìâ°üÀ¨ÍêÕû´ð°¸Ê÷ºÍ¶þ²æÊ÷´ð°¸ ÏÂÔر¾ÎÄ

ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

µÚ6Õ Ê÷ºÍ¶þ²æÊ÷

Ò»¡¢Ñ¡ÔñÌâ 1.D 9.C 21.A 33.A 44.C 56.B 2.B 10.D 22.A 34.D 45.C 57.A 3.C 11.B 23.C 35.B 46.B 58.D 4.D 12.E 24.C 36.B 47.D 59.D 5.D 13.D 25.C 37.C 48.B 60.B 6.A 14.D 26.C 38.B 49.C 7.1C 15.C 27.C 39.B 50.A 7.2A 16.B 28.C 40.B 51.C 7.3C 17.C 29.B 52.C 7.4A 18.C 30.C 53.C 63.B 7.5C 8.B 19.B 20.D 31.D 32.B 54.D 55.C 64.D 65.D 41.1F 41.2B 42.C 43.B 61.1B 61.2A 61.3G 62.B 66.1C 66.2D 66.3F 66.4H 66.5I ²¿·Ö´ð°¸½âÊÍÈçÏ¡£

12. Óɶþ²æÊ÷½áµãµÄ¹«Ê½£ºn=n0+n1+n2=n0+n1+(n0-1)=2n0+n1-1£¬ ÒòΪn=1001,ËùÒÔ1002=2n0+n1,ÔÚÍêÈ«¶þ²æÊ÷Ê÷ÖУ¬n1Ö»ÄÜÈ¡0»ò1,ÔÚ±¾ÌâÖÐÖ»ÄÜÈ¡0£¬¹Ên=501£¬Òò´ËÑ¡E¡£ 42.Ç°ÐòÐòÁÐÊÇ¡°¸ù×óÓÒ¡±£¬ºóÐòÐòÁÐÊÇ¡°×óÓÒ¸ù¡±£¬ÈôÒªÕâÁ½¸öÐòÁÐÏà·´£¬Ö»Óе¥Ö§Ê÷£¬ËùÒÔ±¾ÌâµÄAºÍB¾ù¶Ô£¬µ¥Ö§Ê÷µÄÌصãÊÇÖ»ÓÐÒ»¸öÒ¶×Ó½áµã£¬¹ÊCÊÇ×îºÏÊʵģ¬Ñ¡C¡£A»òB¶¼²»È«¡£Óɱ¾Ìâ¿É½â´ð44Ìâ¡£

47. ×ó×ÓÊ÷Ϊ¿ÕµÄ¶þ²æÊ÷µÄ¸ù½áµãµÄ×óÏßË÷Ϊ¿Õ£¨ÎÞÇ°Çý£©£¬ÏÈÐòÐòÁеÄ×îºó½áµãµÄÓÒÏßË÷Ϊ¿Õ£¨ÎÞºó¼Ì£©£¬¹²2¸ö¿ÕÁ´Óò¡£

52£®ÏßË÷¶þ²æÊ÷ÊÇÀûÓöþ²æÊ÷µÄ¿ÕÁ´Óò¼ÓÉÏÏßË÷£¬n¸ö½áµãµÄ¶þ²æÊ÷ÓÐn+1¸ö¿ÕÁ´Óò¡£ ¶þ¡¢ÅжÏÌâ 1.¡Á 2.¡Á 3.¡Á 4. ¡Ì 13.¡Á 25.¡Ì 37.¡Ì 49.¡Ì 14.¡Ì 26.¡Á 38.¡Á 50.¡Ì 15.¡Á 27.¡Á 39.¡Á 16.¡Á 28.¡Á 40.¡Á 5. ¡Ì 17.¡Ì 29.¡Ì 6. ¡Ì 18.¡Ì 30.¡Á 7.¡Ì 8.¡Á 9. ¡Ì 19.¡Á 31.¡Á 43.¡Ì 20.¡Ì 32.¡Ì 44.¡Á 21.¡Á 33.¡Á 45.¡Ì 10.¡Á 22.¡Ì 34.¡Á 46.¡Á 11.¡Á 23.¡Á 35.¡Á 47.¡Á 12.¡Á 24.¡Á 36.¡Ì 48.¡Á 41.(3) 42.¡Ì ²¿·Ö´ð°¸½âÊÍÈçÏ¡£

6£®Ö»ÓÐÔÚÈ·¶¨ºÎÐò£¨Ç°Ðò¡¢ÖÐÐò¡¢ºóÐò»ò²ã´Î£©±éÀúºó£¬±éÀú½á¹û²ÅΨһ¡£ 19£®ÈκνáµãÖÁ¶àÖ»ÓÐ×ó×ÓÊ÷µÄ¶þ²æÊ÷µÄ±éÀú¾Í²»ÐèÒªÕ»¡£

24. Ö»¶ÔÍêÈ«¶þ²æÊ÷ÊÊÓ㬱àºÅΪiµÄ½áµãµÄ×ó¶ù×ӵıàºÅΪ2i(2i<=n)£¬ÓÒ¶ù×ÓÊÇ2i+1£¨2i+1<=n£©

37. ÆäÖÐÐòÇ°ÇýÊÇÆä×ó×ÓÊ÷ÉÏ°´ÖÐÐò±éÀúµÄ×îÓұߵĽáµã£¨Ò¶×Ó»òÎÞÓÒ×ÓÅ®£©£¬¸Ã½áµãÎÞÓÒº¢×Ó¡£

38 . вåÈëµÄ½áµã¶¼ÊÇÒ¶×Ó½áµã¡£ 42. ÔÚ¶þ²æÊ÷ÉÏ£¬¶ÔÓÐ×óÓÒ×ÓÅ®µÄ½áµã£¬ÆäÖÐÐòÇ°ÇýÊÇÆä×ó×ÓÊ÷ÉÏ°´ÖÐÐò±éÀúµÄ×îÓұߵĽáµã£¨¸Ã½áµãµÄºó¼ÌÖ¸ÕëÖ¸Ïò×æÏÈ£©£¬ÖÐÐòºó¼ÌÊÇÆäÓÒ×ÓÊ÷ÉÏ°´ÖÐÐò±éÀúµÄ×î×ó±ßµÄ½áµã£¨¸Ã½áµãµÄÇ°ÇýÖ¸ÕëÖ¸Ïò×æÏÈ£©¡£

44£®·Ç¿Õ¶þ²æÊ÷ÖÐÐò±éÀúµÚÒ»¸ö½áµãÎÞÇ°Çý£¬×îºóÒ»¸ö½áµãÎÞºó¼Ì£¬ÕâÁ½¸ö½áµãµÄÇ°ÇýÏßË÷ºÍºó¼ÌÏßË÷Ϊ¿ÕÖ¸Õë¡£ Èý.Ìî¿ÕÌâ

1ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

1.(1)¸ù½áµã(2)×ó×ÓÊ÷(3)ÓÒ×ÓÊ÷ 2.(1)Ë«Ç×Á´±í±íʾ·¨(2)º¢×ÓÁ´±í±íʾ·¨(3)º¢×ÓÐֵܱíʾ·¨

3£®p->lchild==null && p->rchlid==null 4.(1) ++a*b3*4-cd (2)18 5.ƽºâÒò×Ó

k-1kH-1H

6. 9 7. 12 8.(1)2 (2)2-1 9.(1)2 (2)2-1 (3)H=?log2N?+1

10. ÓÃ˳Ðò´æ´¢¶þ²æÊ÷ʱ£¬Òª°´ÍêÈ«¶þ²æÊ÷µÄÐÎʽ´æ´¢£¬·ÇÍêÈ«¶þ²æÊ÷´æ´¢Ê±£¬Òª¼Ó¡°Ðé½áµã¡±¡£Éè±àºÅΪiºÍjµÄ½áµãÔÚ˳Ðò´æ´¢ÖеÄϱêΪs ºÍt ,Ôò½áµãiºÍjÔÚͬһ²ãÉϵÄÌõ¼þÊÇ?log2s?=?log2t?¡£

11. ?log2i?=?log2j? 12.(1)0 (2)(n-1)/2 (3)(n+1)/2 (4) ?log2n? +1 13.n

K+1k-2

14. N2+1 15.(1) 2-1 (2) k+1 16. ?N/2? 17. 2 18. 64 19. 99 20. 11 21.(1) n1-1 (2)n2+n3

k-2H-1H-1k-2

22.(1)2+1£¨µÚk²ã1¸ö½áµã£¬×ܽáµã¸öÊýÊÇ2£¬ÆäË«Ç×ÊÇ2/2=2£©(2) ?log2i?+1 23.69

h-1

24. 4 25.3 26. ?n/2? 27. ?log2k?+1 28.(1)ÍêÈ«¶þ²æÊ÷ (2)µ¥Ö¦Ê÷£¬Ê÷ÖÐÈÎÒ»½áµã£¨³ý×îºóÒ»¸ö½áµãÊÇÒ¶×ÓÍ⣩,Ö»ÓÐ×ó×ÓÅ®»òÖ»ÓÐÓÒ×ÓÅ®¡£

29.N+1 30.(1) 128(µÚÆß²ãÂú£¬¼ÓµÚ°Ë²ã£±¸ö) (2) 7 31. 0ÖÁ¶à¸ö¡£ÈÎÒâ¶þ²æÊ÷£¬¶ÈΪ£±µÄ½áµã¸öÊýûÏÞÖÆ¡£Ö»ÓÐÍêÈ«¶þ²æÊ÷£¬¶ÈΪ£±µÄ½áµã¸öÊý²ÅÖÁ¶àΪ1¡£

32£®21 33.(1)2 (2) n-1 (3) 1 (4) n (5) 1 (6) n-1

34.(1) FEGHDCB (2)BEF£¨¸Ã¶þ²æÊ÷ת»»³ÉÉ­ÁÖ£¬º¬Èý¿ÃÊ÷£¬ÆäµÚÒ»¿ÃÊ÷µÄÏȸù´ÎÐòÊÇBEF£©

35.(1)ÏÈÐò£¨2£©ÖÐÐò 36. (1)EACBDGF £¨2£©2 37.ÈκνáµãÖÁ¶àÖ»ÓÐÓÒ×ÓÅ®µÄ¶þ²æÊ÷¡£

38.(1)a (2) dbe (3) hfcg 39.(1) . (2) ...GD.B...HE..FCA 40.DGEBFCA 41£®(1)5 £¨2£©ÂÔ 42.¶þ²æÅÅÐòÊ÷ 43.¶þ²æÊ÷ 44.Ç°Ðò

45.(1)Ïȸù´ÎÐò£¨2£©Öиù´ÎÐò 46.Ë«Ç×µÄÓÒ×ÓÊ÷ÖÐ×î×óϵÄÒ¶×Ó½áµã 47.2 48.(n+1)/2

49.31£¨xµÄºó¼ÌÊǾ­xµÄË«Ç×yµÄÓÒ×ÓÊ÷ÖÐ×î×óϵÄÒ¶½áµã£© 50.(1)Ç°Çý (2)ºó¼Ì

51.(1)1 (2)y^.lchild (3)0 (4)x (5)1 (6) y (7)x(±àÕß×¢£º±¾Ìâ°´ÖÐÐòÏßË÷»¯)

52.´øȨ·¾¶³¤¶È×îСµÄ¶þ²æÊ÷£¬ÓÖ³Æ×îÓŶþ²æÊ÷ 53.69 54.(1)6 (2)261 55.(1)80 (2)001£¨²»Î¨Ò»£©56.2n0-1

57.±¾Ìâ¢ÙÊDZí´ïʽÇóÖµ£¬¢ÚÊÇÔÚ¶þ²æÅÅÐòÊ÷ÖÐɾ³ýֵΪxµÄ½áµã¡£Ê×ÏȲéÕÒx£¬ÈôûÓÐx£¬Ôò½áÊø¡£·ñÔò·Ö³ÉËÄÖÖÇé¿öÌÖÂÛ£ºx½áµãÓÐ×óÓÒ×ÓÊ÷£»Ö»ÓÐ×ó×ÓÊ÷£»Ö»ÓÐÓÒ×ÓÊ÷ºÍ±¾ÉíÊÇÒ¶×Ó¡£

(1)Postoder_eval(t^.Lchild) (2) Postorder_eval(t^.Rchild) (3)ERROR(ÎÞ´ËÔËËã·û)(4)A

(5)tempA^.Lchild (6)tempA=NULL (7)q^.Rchild (8)q (9)tempA^.Rchild (10)tempA^.Item

2ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

58.(1) IF t=NIL THEN num:=0 ELSE num:=num(t^.l)+num(t^.r)+1

(2) IF (t=NIL) AND (m¡Ün) OR (t<>NIL) AND (m>n) THEN all:=false

ELSE BEGIN chk(t^.l,2*m);chk (t^.r,2*m+1);END

59. (1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)

60.(1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)

61.(1)p (2)0 (3)height(p->lchild) (4)0 (5)height(p->rchild) (6)lh+1 (7)rh+1 (8)0

62.(1)p<>NIL (2)addx(p) (3)addx(tree) (4)r^.rchild

63.(1)stack[tp]=t (2) p=stack[tp--] (3)p (4)++tp

64.¢Ù ±¾Ëã·¨½«¶þ²æÊ÷µÄ×óÓÒ×ÓÊ÷½»»»

¢Ú (1)new (s) //³õʼ»¯£¬ÉêÇë½áµã (2) s^.next=NIL //sÊÇ´øÍ·½áµãµÄÁ´Õ»

(3)s^.next^.data //È¡Õ»¶¥ÔªËØ (4)s^.next:= p^.next //Õ»¶¥Ö¸ÕëÏÂÒÆ (5)dispose(p) //»ØÊÕ¿Õ¼ä (6)p^.next:=s^.next //½«Ð½áµãÈëÁ´

Õ»

(7)push(s,p^.rchild) //ÏÈÑØÊ÷µÄ×ó·ÖÖ§ÏòÏ£¬½«pµÄÓÒ×ÓÅ®ÈëÕ»±£´æ

(8)NOT empty(s) (9) finishe:=true //ÒÑÍê³É (10)finish=true £¨»ò

s^.next=NIL£©

65.(1)new(t) (2)2*i¡Ün (3)t^.lchild,2*i (4)2*i+1¡Ün (5)t^.rchild,2*i+1 (6)1

66.(1)Push(s,p) (2)K=2 (3)p->data=ch (4)BT=p (5) ins>>ch 67.(1)result; (2)p:=p^.link; (3) q:=q^.pre £¨£¨£²£©£¨£³£©Ë³Ðò¿É±ä£©

68.(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild

69£®(1)(i<=j) AND (x<=y) (2)A[i]<>B[k] (3)k-x

(4)creatBT(i+1,i+L,x,k-1,s^.lchild) (5) creatBT(i+L+1,j,k+1,y,s^.rchild) 70. (1)push(s,bt) £¨2£©pop(s) £¨3£©push(s,p^.rchild) // pµÄÓÒ×ÓÊ÷½øÕ» 71£®(1) p=p->lchild // ÑØ×ó×ÓÊ÷ÏòÏ £¨2£©p=p->rchild 72£®(1)0 £¨2£©hl>hr (3)hr=hl

73. (1)top>0 (2)t*2 // ÑØ×ó·ÖÖ¦ÏòÏ £¨3£©top-1 // ÍËÕ» 74£®(1)p:=p^.lchild £¨2£©£¨3£©p:=S.data[s.top]^.rchild (4)s.top=0 75. (1)*ppos // ¸ù½áµã £¨2£©rpos=ipos (3)rpos¨Cipos (4)ipos (5)ppos+1 76. (1)top>0 (2)stack[top]:=nd^.right (3)nd^.left<>NIL (4)top:=top+1 (×ó×ÓÊ÷·Ç¿Õ)

77. (1) p<>thr // δѭ»·½áÊø £¨2£©p->ltag=0 (3)p->lchild (4)p->rtag=1 && p->rchild!=thr (5) p=p->rchild (6)p=p->rchild 78. Èôp^.rtag=1,Ôòp^.rchild Ϊºó¼Ì£¬·ñÔòpµÄºó¼ÌÊÇpµÄÓÒ×ÓÊ÷ÖÐ×î×óϵĽáµã (1)q=p^.rchild (2)q^.ltag=0 (3) q^.lchild 79£®£¨1£©tree->lchild (2)null (3)pre->rchild

(4)pre->rtag=1 (5) pre->right=tree; (6) tree->right (×¢£¨4£©ºÍ£¨5£©Ë³Ðò¿É»»)

3ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

80£®£¨1£©node->rflag==0 (2)*x=bt (3) *x=node->right ËÄ£®Ó¦ÓÃÌâ

1£®Ê÷µÄº¢×ÓÐÖµÜÁ´±í±íʾ·¨ºÍ¶þ²æÊ÷¶þ²æÁ´±í±íʾ·¨£¬±¾ÖÊÊÇÒ»ÑùµÄ£¬Ö»ÊǽâÊͲ»Í¬£¬Ò²¾ÍÊÇ˵Ê÷£¨Ê÷ÊÇÉ­ÁÖµÄÌØÀý£¬¼´É­ÁÖÖÐÖ»ÓÐÒ»¿ÃÊ÷µÄÌØÊâÇé¿ö£©¿ÉÓöþ²æÊ÷Ψһ±íʾ£¬²¢¿ÉʹÓöþ²æÊ÷µÄһЩË㷨ȥ½â¾öÊ÷ºÍÉ­ÁÖÖеÄÎÊÌâ¡£

Ê÷ºÍ¶þ²æÊ÷µÄÇø±ðÓÐÈý£ºÒ»ÊǶþ²æÊ÷µÄ¶ÈÖÁ¶àΪ2£¬Ê÷ÎÞ´ËÏÞÖÆ£»¶þÊǶþ²æÊ÷ÓÐ×óÓÒ×ÓÊ÷Ö®·Ö£¬¼´Ê¹ÔÚÖ»ÓÐÒ»¸ö·ÖÖ¦µÄÇé¿öÏ£¬ Ò²±ØÐëÖ¸³öÊÇ×ó×ÓÊ÷»¹ÊÇÓÒ×ÓÊ÷£¬Ê÷ÎÞ´ËÏÞÖÆ£»ÈýÊǶþ²æÊ÷ÔÊÐíΪ¿Õ£¬Ê÷Ò»°ã²»ÔÊÐíΪ¿Õ£¨¸ö±ðÊéÉÏÔÊÐíΪ¿Õ£©¡£

2.Ê÷ºÍ¶þ²æÊ÷Âß¼­É϶¼ÊÇÊ÷Ðνṹ£¬Çø±ðÓÐÒÔÉÏÌâ1ËùÊöÈýµã¡£¶þ²æÊ÷²»ÊÇÊ÷µÄÌØÀý¡£ 3£®ÏßÐÔ±íÊôÓÚÔ¼Êø×îÇ¿µÄÏßÐԽṹ£¬ÔÚ·Ç¿ÕÏßÐÔ±íÖУ¬Ö»ÓÐÒ»¸ö¡°µÚÒ»¸ö¡±ÔªËØ£¬Ò²Ö»ÓÐÒ»¸ö¡°×îºóÒ»¸ö¡±ÔªËØ£»³ýµÚÒ»¸öÔªËØÍ⣬ÿ¸öÔªËØÓÐΨһǰÇý£»³ý×îºóÒ»¸öÔªËØÍ⣬ÿ¸öÔªËØÓÐΨһºó¼Ì¡£Ê÷ÊÇÒ»ÖÖ²ã´Î½á¹¹£¬ÓÐÇÒÖ»ÓÐÒ»¸ö¸ù½áµã£¬Ã¿¸ö½áµã¿ÉÒÔÓжà¸ö×ÓÅ®£¬µ«Ö»ÓÐÒ»¸öË«Ç×£¨¸ùÎÞË«Ç×£©£¬´ÓÕâ¸öÒâÒåÉÏ˵´æÔÚÒ»£¨Ë«Ç×£©¶Ô¶à£¨×ÓÅ®£©µÄ¹Øϵ¡£¹ãÒå±íÖеÄÔªËؼȿÉÒÔÊÇÔ­×Ó£¬Ò²¿ÉÒÔÊÇ×Ó±í£¬×Ó±í¿ÉÒÔΪËü±í¹²Ïí¡£´Ó±íÖÐÌ×±íÒâÒåÉÏ˵£¬¹ãÒå±íÒ²ÊDzã´Î½á¹¹¡£´ÓÂß¼­ÉϽ²£¬Ê÷ºÍ¹ãÒå±í¾ùÊô·ÇÏßÐԽṹ¡£µ«ÔÚÒÔÏÂÒâÒåÉÏ£¬ÓÖÍɱäΪ*ÏßÐԽṹ¡£Èç¶ÈΪ1µÄÊ÷£¬ÒÔ¼°¹ãÒå±íÖеÄÔªËض¼ÊÇÔ­ ++×Óʱ¡£ÁíÍ⣬¹ãÒå±í´ÓÔªËØÖ®¼äµÄ¹Øϵ¿É¿´³ÉÇ°ÇýºÍºó¼Ì£¬Ò²·û

+fgºÏÏßÐÔ±í£¬µ«ÕâʱԪËØÓÐÔ­×Ó£¬Ò²ÓÐ×Ó±í£¬¼´ÔªËز¢²»ÊôÓÚͬһ

Êý¾Ý¶ÔÏó¡£ +*4£®·½·¨Óжþ¡£Ò»ÊǶԸÃËãÊõ±í´ïʽ£¨¶þ²æÊ÷£©½øÐкóÐò±éÀú£¬

a+bcµÃµ½±í´ïʽµÄºóÐò±éÀúÐòÁУ¬ÔÙ°´ºó׺±í´ïʽÇóÖµ£»¶þÊǵݹé Çó³ö×ó×ÓÊ÷±í´ïʽµÄÖµ£¬ÔٵݹéÇó³öÓÒ×ÓÊ÷±í´ïʽµÄÖµ£¬×îºó d°´¸ù½áµãÔËËã·û£¨+¡¢-¡¢*¡¢/ µÈ£©½øÐÐ×îºóÇóÖµ¡£

5£®¸ÃËãÊõ±í´ïʽת»¯µÄ¶þ²æÊ÷ÈçÓÒͼËùʾ¡£ µÚ5Ìâͼ

6£®n£¨n>0£©¸ö½áµãµÄd¶ÈÊ÷¹²ÓÐnd¸öÁ´Óò£¬³ý¸ù½áµãÍ⣬ÿ¸ö½áµã¾ùÓÐÒ»¸öÖ¸ÕëËùÖ¸£¬¹Ê¸ÃÊ÷µÄ¿ÕÁ´ÓòÓÐnd-(n-1)=n(d-1)+1¸ö¡£

7£®Ö¤Ã÷£ºÉè¶þ²æÊ÷¶ÈΪ0ºÍ2µÄ½áµãÊý¼°×ܵĽáµãÊý·Ö±ðΪn0£¬n2 ºÍn£¬Ôòn=n0+n2 ¡­ (1)

ÔÙÉè¶þ²æÊ÷µÄ·ÖÖ§ÊýΪB, ³ý¸ù½áµãÍ⣬ÿ¸ö½áµã¶¼ÓÐÒ»¸ö·ÖÖ§ËùÖ¸£¬Ôò n=B+1¡­ ¡­ ¡­(2)

¶ÈΪÁãµÄ½áµãÊÇÒ¶×Ó£¬Ã»ÓзÖÖ§£¬¶ø¶ÈΪ2µÄ½áµãÓÐÁ½¸ö·ÖÖ§£¬Òò´Ë£¨2£©Ê½¿ÉдΪ

n=2*n2+1 ¡­¡­¡­¡­¡­(3)

ÓÉ£¨1£©¡¢£¨3£©µÃn2=n0-1,´úÈ루1£©£¬²¢ÓÉ£¨1£©ºÍ£¨2£©µÃB=2*(n0-1)¡£ Ö¤±Ï¡£

h-1

8£®(1)k(hΪ²ãÊý)

h-1

£¨2£©ÒòΪ¸ÃÊ÷ÿ²ãÉϾùÓÐK¸ö½áµã£¬´Ó¸ù¿ªÊ¼±àºÅΪ1£¬Ôò½áµãiµÄ´ÓÓÒÏò×óÊýµÚ£²¸öº¢×ӵĽáµã±àºÅΪki¡£Éèn Ϊ½áµãiµÄ×ÓÅ®£¬Ôò¹Øϵʽ(i-1)k+2<=n<=ik+1³ÉÁ¢£¬ÒòiÊÇÕûÊý£¬¹Ê½áµãnµÄË«Ç×iµÄ±àºÅΪ?n-2)/k?+1¡£

(3) ½áµãn(n>1)µÄÇ°Ò»½áµã±àºÅΪn-1£¨Æä×îÓÒ±ß×ÓÅ®±àºÅÊÇ(n-1)*k+1£©£¬¹Ê½áµã nµÄµÚ i¸öº¢×ӵıàºÅÊÇ(n-1)*k+1+i¡£

(4) ¸ù¾ÝÒÔÉÏ·ÖÎö£¬½áµãnÓÐÓÒÐֵܵÄÌõ¼þÊÇ£¬Ëü²»ÊÇË«Ç׵ĴÓÓÒÊýµÄµÚÒ»×ÓÅ®£¬¼´ (n-1)%k!=0£¬ÆäÓÒÐֵܱàºÅÊÇn+1¡£

9£®×îµÍ¸ß¶È¶þ²æÊ÷µÄÌصãÊÇ£¬³ý×îϲã½áµã¸öÊý²»ÂúÍ⣬ÆäÓà¸÷²ãµÄ½áµãÊý¶¼Ó¦´ïµ½

h-1h

¸÷²ãµÄ×î´óÖµ¡£Éèn¸ö½áµãµÄ¶þ²æÊ÷µÄ×îµÍ¸ß¶ÈÊÇh£¬ÔònÓ¦Âú×ã2

4ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

heÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.

ΪO(logn)¡£

n

10£®2-1(±¾ÌâµÈ¼ÛÓڸ߶ÈΪnµÄÂú¶þ²æÊ÷ÓжàÉÙÒ¶×Ó½áµã£¬´Ó¸ù½áµãµ½¸÷Ò¶×Ó½áµãµÄµ¥Ö¦Ê÷ÊDz»Í¬µÄ¶þ²æÊ÷¡£)

7-1

11£®235¡£ÓÉÓÚ±¾ÌâÇó¶þ²æÊ÷µÄ½áµãÊý×î¶àÊǶàÉÙ£¬µÚ7²ã¹²ÓÐ2=64¸ö½áµã£¬ÒÑÖªÓÐ10¸öÒ¶×Ó£¬ÆäÓà54¸ö½áµã¾ùΪ·ÖÖ§½áµã¡£ËüÔڵڰ˲ãÉÏÓÐ108¸öÒ¶×Ó½áµã¡£ËùÒԸöþ²æÊ÷µÄ

7

½áµãÊý×î¶à¿É´ï(2-1+108)=235¡£(×¢Ò⣻±¾ÌⲢδÃ÷˵ÍêÈ«¶þ²æÊ÷µÄ¸ß¶È£¬µ«¸ù¾ÝÌâÒ⣬ֻÄÜ8²ã¡£)

10

12£®1023£¨=2-1£© 13£®Ö¤Ã÷£ºÉè¶ÈΪ1ºÍ2 µÄ½áµãÊýÊÇn1ºÍn2£¬Ôò¶þ²æÊ÷½áµãÊýnΪn=m+n1+n2¡­¡­¡­¡­ (1)

ÓÉÓÚ¶þ²æÊ÷¸ù½áµãûÓзÖÖ¦ËùÖ¸£¬¶ÈΪ1ºÍ2µÄ½áµã¸÷ÓÐ1¸öºÍ2¸ö·ÖÖ¦£¬¶ÈΪ0 µÄ½áµãûÓзÖÖ¦£¬¹Ê¶þ²æÊ÷µÄ½áµãÊýnÓë·ÖÖ¦ÊýBÓÐÈçϹØϵ n=B+1=n1+2*n2+1¡­¡­¡­¡­¡­¡­¡­¡­¡­.(2)

ÓÉ£¨1£©ºÍ£¨2£©£¬µÃn2=m-1¡£¼´n¸ö½áµãµÄ¶þ²æÊ÷£¬ÈôÒ¶×Ó½áµãÊýÊÇm£¬Ôò·ÇÒ¶×Ó½áµãÖÐÓУ¨m-1£©¸ö¶ÈΪ2£¬ÆäÓà¶ÈΪ1¡£

14£®¸ù¾Ý˳Ðò´æ´¢µÄÍêÈ«¶þ²æÊ÷µÄÐÔÖÊ£¬±àºÅΪiµÄ½áµãµÄË«Ç׵ıàºÅÊÇ?i/2?£¬¹ÊA[i]ºÍA[j]µÄ×î½ü¹«¹²×æÏÈ¿ÉÈçÏÂÇó³ö£º while(i/2!=j/2)

if(i>j) i=i/2; else j=j/2;

Í˳öwhileºó£¬Èôi/2=0,Ôò×î½ü¹«¹²×æÏÈΪ¸ù½áµã£¬·ñÔò×î½ü¹«¹²×æÏÈÊÇi/2¡£ 15£®N¸ö½áµãµÄK²æÊ÷£¬×î´ó¸ß¶ÈN£¨Ö»ÓÐÒ»¸öÒ¶½áµãµÄÈÎÒâk²æÊ÷£©¡£Éè×îС¸ß¶ÈΪH£¬µÚ

i-12H-1

i(1<=i<=H)²ãµÄ½áµãÊýK£¬ÔòN=1+k+k+¡­+ k£¬Óɴ˵ÃH=?logK(N(K-1)+1)?16. ½áµã¸öÊýÔÚ20µ½40µÄÂú¶þ²æÊ÷ÇÒ½áµãÊýÊÇËØÊýµÄÊýÊÇ31£¬ÆäÒ¶×ÓÊýÊÇ16¡£

17£®Éè·ÖÖ¦½áµãºÍÒ¶×Ó½áµãÊý·Ö±ðÊÇΪnkºÍn0£¬Òò´ËÓÐn=n0+nk (1)

ÁíÍâ´ÓÊ÷µÄ·ÖÖ¦ÊýBÓë½áµãµÄ¹ØϵÓÐ n=B+1=K*nk +1 (2)

ÓÉ£¨1£©ºÍ£¨2£©ÓÐ n0=n-nk=(n(K-1)+1)/K

18.ÓÃ˳Ðò´æ´¢½á¹¹´æ´¢n¸ö½áµãµÄÍêÈ«¶þ²æÊ÷¡£±àºÅΪiµÄ½áµã£¬ÆäË«Ç×±àºÅÊÇ?i/2?(i=1ʱÎÞË«Ç×)£¬Æä×ó×ÓÅ®ÊÇ2i(Èô2i<=n,·ñÔòiÎÞ×ó×ÓÅ®)£¬ÓÒ×ÓÅ®ÊÇ2i+1(Èô2i+1<=n,·ñÔòÎÞÓÒ×ÓÅ®)¡£

19. ¸ù¾ÝÍêÈ«¶þ²æÊ÷µÄÐÔÖÊ£¬×îºóÒ»¸ö½áµã£¨±àºÅΪn£©µÄË«Ç×½áµãµÄ±àºÅÊÇ?n/2?£¬ÕâÊÇ×îºóÒ»¸ö·ÖÖ¦½áµã£¬ÔÚËüÖ®ºóÊǵÚÒ»¸öÖնˣ¨Ò¶×Ó£©½áµã£¬¹ÊÐòºÅ×îСµÄÒ¶×Ó½áµãµÄϱêÊÇ?n/2?+1¡£

20. °´Ç°Ðò±éÀú¶Ô¶¥µã±àºÅ£¬¼´¸ù½áµã´Ó£±¿ªÊ¼£¬¶ÔÇ°Ðò±éÀúÐòÁеĽáµã´ÓСµ½´ó±àºÅ¡£ 21. ÉèÊ÷µÄ½áµãÊýΪn£¬·ÖÖ¦ÊýΪB£¬ÔòÏÂÃæ¶þʽ³ÉÁ¢

n=n0+n1+n2+¡­+nm (1) n=B+1= n1+2n2+¡­+mnm (2)

ÓÉ(1)ºÍ(2)µÃÒ¶×Ó½áµãÊýn0=1+

?(i?1)ni?1mi

22. ?log2n? +1 23.15

24. ¸Ã½áÂÛ²»³ÉÁ¢¡£¶ÔÓÚÈÎÒ»a€A,¿ÉÔÚBÖÐÕÒµ½×î½ü×æÏÈf¡£aÔÚfµÄ×ó×ÓÊ÷ÉÏ¡£¶ÔÓÚ´Ófµ½¸ù½áµã·¾¶ÉÏËùÓÐb€B£¬ÓпÉÄÜfÔÚbµÄÓÒ×ÓÊ÷ÉÏ£¬Òò¶øaÒ²¾ÍÔÚbµÄÓÒ×ÓÊ÷ÉÏ£¬Õâʱa£¾b£¬Òò´Ëa£¼b²»³ÉÁ¢¡£Í¬Àí¿ÉÒÔÖ¤Ã÷b

5ÎĵµÀ´Ô´Îª:´ÓÍøÂçÊÕ¼¯ÕûÀí.word°æ±¾¿É±à¼­.»¶Ó­ÏÂÔØÖ§³Ö.