能被2、3、5、7、11、13、17、19整除的数的特征 下载本文

【数学】能被2、3、5、7、11、13、17、19整除的数的特征★★

能被2整除的数的特征是个位上是偶数,

能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)

能被5整除的数个位上的数为0或5,

能被7整除的数的特征

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。 能被11整除的数的特征

把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。 —→奇位数字的和9+6+8=23 —→偶位数位的和4+1+7=12 23-12=11

因此,491678能被11整除。这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。即:从一个数里减去11的10倍、20倍、30倍??到余下一个100以内的数为止。如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被13整除的数的特征

把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果数字仍然太大不能直接观察出来,就重复此过程。 如:判断1284322能不能被13整除。

128432+2×4=128440 12844+0×4=12844 1284+4×4=1300 1300÷13=100

所以,1284322能被13整除。

能被17整除的数的特征

把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果数字仍然太大不能直接观察出来,就重复此过程。

例如:判断1675282能不能被17整除。

167528-2×5=167518 16751-8×5=16711 1671-1×5=1666 166-6×5=136

到这里如果你仍然观察不出来,就继续??

6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30-13=17,17÷17=1;所以1675282能被17整除。

能被19整除的数的特征

把一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果数字仍然太大不能直接观察出来,就重复此过程