达市中心后,小马拿出10元,小雨拿出14元,小立还没来得及拿钱,司机说:“钱够了”,那么,小立应分别给小马和小雨各多少钱,三人出的车费才一样多? 答案:车费总数10+14=24(元) 平均每人应付的车费24/3=8(元) 小立应给小马的钱10-8=2(元) 小立应给小雨的钱14-8=6(元) 49. 在一次数学考试中,小玲和小军的成绩加起来是195分,小玲和小方的成绩加起来是198分,小军和小方的成绩加起来是193分.问他们三人各得多少分? 答案:列出下列等式 小玲+小军=195 (1) 小玲+小方=198 (2) 小军+小方=193 (3) 将三个等式的左边和右边各项分别相加,得 2×(小玲+小军+小方)=586 即小玲+小军+小方=293 (4) 由(4)式-(1)式得 小方=293-195=98 由(4)式-(2)式得 小军=293-198=95 由(4)式-(3)式得 小玲=293-193=100 可见小方得98分,小军得95分,小玲得100分. 50. 一桶食油连桶共重100千克,用去一半油后,连桶还有60千克,原来桶里有多少千克食油?油桶重多少千克? 答案:100千克变60千克,少了100-60=40千克,这是一半油的重量,所以全部油重80千克,油桶重100-80=20千克。 51. 一张纸片,第一次将它撕成4片,以后每次在纸片中取一片,并将它撕成4片,这样撕10次,共有______片纸片。 答案:每次撕一次纸片,创造了四张,减少了一张,即创造了3张,撕10次,共有30张,加上原来的一张,共有31张。 52. 把下图分割成 4 块形状大小相同的图形,使每个图形中都含有一只小猴,你能做到吗? 答案:切成 L 状即可,答案不唯一 53. △ + □ = 9; △ + △ + □ + □ + □ = 25; △ = ( ) ; □ = ( ) 答案:因为△ + □ = 9,我们就可把△+△+□+□+□=25中的△+□换成9,变成9+△+□+□=25;再替换一次,变成9+9+□=25,可以得出□=7;再根据△+□=9和求出的□=7,可以求出△=2。 54. 下列算式中,□,○,△,☆,*各代表什么数? (1)□+5=13-6; (2)28-○=15+7; (3)3×△=54; (4)☆÷3=87; (5)56÷*=7。
答案:(1)由加法运算规则知,□=13-6-5=2; (2)由减法运算规则知,○=28-(15+7)=6; (3)由乘法运算规则知,△=54÷3=18; (4)由除法运算规则知,☆=87×3=261; (5)由除法运算规则知,*=56÷7=8。 55. 1、长颈鹿问小羊:\一根竹竿两个头,二根竹竿四个头,四根半竹竿几个头?\小羊高兴地回九个头\。小羊回答得对吗?为什么? 答案:小羊回答的不正确,因为就算半根竹竿也有两个头,所以四根半竹竿有10个头。 56. □+□+□+□+□=30在上面的□中填上5个连续的自然数,使等式成立。 答案:4+5+6+7+8=30 57. 顺序观察下面图形,并按其变化规律在“?”处填上合适的图形. 答案:每个图逐个加三个圆点,而且是按照加实心三个、空心三个的顺序递加的。 58. 两个母亲给他们的两个女儿一些钱,一个给她女儿120元,一个给她女儿100元,当两个女儿计算她们的钱时,总共只有120元。小朋友,你知道为什么不是220元,却只有120元呢? 答案:因为只有3个人,外祖母、母亲和女儿。 59. 某数加上5,乘以5,减去5,除以5,其结果等于5。求这个数。 答案:从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法。从最后一步推起,“除以5,其结果等于5”可以求出被除数5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1。 5×5=25 25+5=30 30÷5=6 6-5=1 答所求的数为1。 60. 根据图中数字的规律,在最上边的空格中填上合适的数。 答案:64,每个数字是下面的两个数字之和
61. 两个整数之积为144,差为10,求这两个数。 答案:列出两个数积为144的各种情况,再寻找满足题目条件的一对出来 1 2 3 4 6 8 9 12 144 72 48 36 24 18 16 12 可见其中差是10的两个数是8和18,这一对数即为所求。 62. 小明家的小狗喝水时间很规律,每隔5分钟喝一次水,第一次喝水的时间是8点整,当小狗第20次喝水时,时间是多少? 答案:第20次喝水与第1次喝水之间有20-1=19(个)间隔,因为小狗每隔5分钟喝一次,所以到第20次喝水中间间隔的时间是19×5=95(分钟),也就是1个小时35分钟,所以小狗第20次喝水时时间是9时35分. 63. 100个和尚分100个馒头,大和尚每人分3个馒头,小和尚3人分1个馒头,恰好分完.问大和尚、小和尚各多少人? 答案:若是大和尚33人,就要分3×33=99个馒头,还剩100-99=1(个)馒头,分给3个小和尚,这样和尚总人数为33+3=36人,与已知有100个和尚不符,不对!大和尚的人数减少些.若是有30个大和尚,分3×30=90个馒头,还剩10个馒头,可以分给3×10=30个小和尚,这样和尚总数是30+30=60人.还必须减少大和尚的人数.若是有25个大和尚,分3×25=75个馒头,还剩100-75=25个馒头,可以分给3×25=75个小和尚.这样和尚总数是25+75=100人,所以答案是大和尚25人,小和尚75人. 64. 一本小人书共100 页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字? 答案:从第1页到第9页,共9页,每页用1个铅字,共用1×9=9 (个);从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是9+180+3=192 (个)。 65. 一根粉笔有两个头,3跟半粉笔有几个头? 答案:2x4=8个 3根半粉笔有8个头 66. 小马虎在做加法题时,把个位上的3看成了5,把十位上的8看成了3,结果和是215,正确答案是( ) 答案:正确的结果应该是215-2+50=263。 67. 找规律,在空格里填上合适的数 答案:这道题可以有多种填法,可以从大到小填数,也可以从小到大填数,两个数之间可以相差1,也可以相差2.3.4或5
68. 烙熟一块饼需要4分钟,每面2分钟。一只锅只能同时烙2块饼,要烙3块饼,最少需要几分钟? 答案:A饼和B饼同时下锅,用2分钟烙完一面后,取出A饼,放入C饼,同时B饼翻身,再烙2分钟,这时B饼已熟,起锅,放入A饼,烙其剩下的一面,同时C饼翻身,一起再烙2分钟。 69. 两个整数之积为144,差为10,求这两个数。 答案:列出两个数积为144的各种情况,再寻找满足题目条件的一对出来 可见其中差是10的两个数是8和18,这一对数即为所求。 70. 有两根绳子,甲绳比乙绳的2倍多4米,比乙绳的3倍少6米,两根绳子各长多少米? 答案:乙10 (米) 甲24 (米) 71. 5个人到水龙头接水,水龙头注满水瓶的时间分别是5分钟、3分钟、4分钟、2分钟、1分钟。现在只有一个水龙头可用。问怎样安排这5个人的接水次序,可使他们总的等候时间最短?这个最短时间是多少? 答案:可以按1分钟、2分钟、3分钟、4分钟、5分钟的顺序打水,这样每个人排队和打水时间的总和最小,最小值是1×5+2×4+3×3+4×2+5×1=35 (分) 72. 早上妈妈用平底锅给小明煎薄饼吃,平底锅里每次能同时放两个饼.煎熟1个饼需要2分钟,(正、反面各需1分钟),妈妈要煎5个饼至少需要几分钟?煎6个饼呢? 答案:5个比3个饼多2个饼,多的这2个饼,需要2分钟,这其中它们100%使用了平底锅,没让它闲着,所以5个饼最少要3+2=5(分)钟.煎6个饼2个2个的煎,其中都100%使用了平底锅,所以最短时间为2+2+2=6 (分)钟. 73. 如下图,一只狗在A点,小峰在B点,他们互相朝对方前进,小峰一分钟走5米,狗每分钟跑20米,狗遇到小峰后又往回跑到A点,再朝小峰跑,遇到后再跑回A点,,,,,,请问小峰走了5分钟的时候,狗跑了多少米呢?A——————————B 答案:跑了20×5=100(米) 74. 巧算368-199等于多少呢? 答案:原式=368-200+1 =168+1 =169 75. 在一次数学考试中,小玲和小军的成绩加起来是195分,小玲和小方的成绩加起来是198分,小军和小方的成绩加起来是193分.问他们三人各得多少分? 答案:列出下列等式 小玲+小军=195 (1) 小玲+小方=198 (2) 小军+小方=193 (3) 将三个等式的左边和右边各项分别相加,得 2×(小玲+小军+小方)=586 即小玲+小军+小方=293 (4) 由