第一单元分数乘法知识点总结
(一)、分数乘法的意义。(只看第二个因数)
1、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
求一个分数的几倍是多少 求几个相同分数的和是多少,就用这个分数乘”几“
222
例如:3 ×3,表示:3个3 相加是多少,还表示3 的3倍是多少。
2、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
55
例如:6×12 ,表示:6的12 是多少。
2727
7 ×8 ,表示:7 的8 是多少。
3、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义与整数乘法的意义也不相同,是表示这个数的几倍是多少。
5252
例如:12 ×13 ,表示:12 的13 倍是多少。
(二)、分数乘法的计算法则:
1、分数乘整数的运算法则是:用分数的分子和整数相乘的积作分子,分母不变。
带分数乘整数的计算方法,先把带分数化成假分数,再按照分数乘整数的方法进行计算
注:(1)为了计算简便能约分的可先约分再计算。(分母和整数约分)
(2)约分是用整数和下面的分母约掉最大公因数。(计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。用字母表示为x=(a不等于0,c不等于0) (分子乘分子,分母乘分母)
分数乘分数的计算方法也适用于小数乘分数,先把小数化成分数,再计算,列如0.5x =x =
分数乘分数,这里的分数也可以是带分数,先把带分数化成假分数,再计算。列如2 x = x =
分数乘分数的计算方法同样适用于分乘整数,先把整数化成分母是1的分数,再计算。列如 x4 = x =
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,
再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c 注:1.在进行因数与积的大小比较时,要注意因数为0时的特殊情况。 2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。(希望同学们好好理解) (四)分数乘法混合运算 1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c (五)、解决实际问题。 1.分数应用题一般解题步行骤。 (1)找出含有分率的关键句。 (2)找出单位“1”的量 (3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。 (4)根据已知条件和问题列式解答。 2.乘法应用题有关注意概念。 (1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? (2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1。” (3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。 (4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?” (5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等