11.已知数列?an?的满足a1=1,前n项的和为Sn,且(1)求a2的值; (2)设bn?an?1?an2?(n?N*).
anan?14Sn?1an,证明:数列?bn?是等差数列;
an?1?anb(3)设cn?2n?an,若1???的k的取值范围.
2,求对所有的正整数n都有2?2?k??32?cn成立
12.已知数列?xn?满足x1?1,xn?1?2xn?3,求证: (I)0?xn?9; (II)xn?xn?1;
?2?(III)xn?9?8???.
?3?
n?1 5
13.已知数列{an}的前n项和为Sn,且Sn?2an?(1)求证{an?(2)设数列{3, n?N*. n21}为等比数列,并求出数列{an}的通项公式; 2n1}的前n项和为Tn,是否存在正整数?,对任意Snm,n?N*,不等式Tm-?Sn?0恒成立?若存在,求出?的最小值,若不存在,请说明理
由。
11?1?114.已知无穷数列?an?的首项a1?,??an??,n?N?.
2an?12?an?(Ⅰ)证明:0?an?1; (Ⅱ) 记bn?a?an?1??nanan?12,Tn为数列?bn?的前n项和,证明:对任意正整数n,
Tn?
3. 1015.已知数列?an?的前n项和为Sn,a1?(1)求数列?an?的通项公式; (2)设bn?3,2Sn?(n?1)an?1(n?2). 2133nTT?(),数列的前项和为,证明:n?N*b??nnn(an?1)250(n?N*).
6
参考答案
11.(1)数列?an?的前n项和为Sn,Sn?2an?3n,(n?N*), ∴Sn?1?2an?1?3(n?1),
两式相减得:an?1?2an?1?2an?3,即an?1?2an?3, ∴an?1?3?2(an?3),即
an?1?3?2, an?3又当n?1时,a1?S1?2a1?3,得a1?3,
∴数列?an?3?是以6为首项,2为公比的等比数列, ∴an?3?6?2n?1?3?2n, ∴an?3?2n?3. (2)由题意,bn?2n?12n?1(an?3)??3?2n?(2n?1)?2n, 33∴Tn?1?21?3?22?5?23?L?(2n?3)?2n?1?(2n?1)?2n, 2Tn?1?22?3?23?5?24?L?(2n?3)?2n?(2n?1)?2n?1,
两式相减得Tn??2?2?22?2?23L?2?2n?(2n?1)?2n?1 ??2?2?(22?23?L?2n)?(2n?1)?2n?1
22(1?2n?1)??2?2??(2n?1)?2n?1
1?2??2?23(1?2n?1)?(2n?1)?2n?1
??2?8?2?2n?1?(2n?1)?2n?1 ?6?(2n?3)?2n?1.
(3)假设存在s,p,r?N*,且s?p?r,使得bs,bp,br成等比数列,则bp2?bs?br,
p∵bp?(2p?1)?2,bs?(2s?1)?2s,br?(2r?1)?2r,
∴(2p?1)2?22p?(2s?1)?(2r?1)?2s?r, (2p?1)2?22p?s?r?1, ∴
(2s?1)(2r?1)∵2p?1是奇数,2s?1,2r?1也是奇数, (2p?1)2∴是奇数, (2s?1)(2r?1)又22p?s?r是偶数,
7
(2p?1)2?22p?s?r?1不成立, 故
(2s?1)(2r?1)故数列?bn?中不存在三项,可以构成等比数列.
2.(1)证明:当n?1时,a1?S1?2, 当n≥2时,a?Sn?Sn?1?2n?2n?1?2n?1, ?2,n?1∴an??n?1,
2,n≥2?∴对任意的n?N*,Sn?2n是数列?an?中的第n?1项, ∴数列?an?是“H数列”.
(2)依题意,an?1?(n?1)d,Sn?n?n(n?1)d, 2若?an?是“H数列”,则对任意的n?N*,都存在k?N*使得ak?Sn, 即1?(k?1)d?n?∴k?n(n?1)d, 2n?1n(n?1)?, d2n(n?1)?N, 2n?1?Z且d?0, d又∵k?N*,
∴对任意的n?N*,∴d??1.
3.(1)依题意得an??2n?2,故a1??4. 又2Tn?6Sn?8n,即Tn?3Sn?4n,
所以,当n≥2时,bn?Tn?Tn?1?3(Sn?Sn?1)?4?3an?4??6n?2. 又b1?T1?3S1?4?3a1?4??8也适合上式, 故bn??6n?2.
(2)因为cn?bn?8n?3??6n?2?8n?3?2n?1, dn?1?cdn?2dn?1,因此dn?1?1?2(dn?1)(n?N*).
由于d1?c1?3,所以?dn?1?是首项为d1?1?4,公比为2的等比数列. 所以dn?1?4?2n?1?2n?1,所以dn?2n?1?1.
8