专题4第2讲 统计和概率-2019年高考数学二轮复习题型总结与必刷题含答案 下载本文

考情速递:

1(2018?新课标Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】:B

2. (2018?新课标Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:

第一种生产方式 第二种生产方式 超过m 不超过m (3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:K2=

P(K2≥k) k , 0.050 3.841 0.010 6.635 0.001 10.828 【解析】:(1)根据茎叶图中的数据知,

第一种生产方式的工作时间主要集中在72~92之间, 第二种生产方式的工作时间主要集中在65~85之间, 所以第二种生产方式的工作时间较少些,效率更高;

(2)这40名工人完成生产任务所需时间按从小到大的顺序排列后, 排在中间的两个数据是79和81,计算它们的中位数为m=由此填写列联表如下;

第一种生产方式 第二种生产方式 总计 超过m 15 5 20 不超过m 5 15 20 总计 20 20 40 =80;

(3)根据(2)中的列联表,计算

K2=

==10>6.635,

∴能有99%的把握认为两种生产方式的效率有差异.

例1(2018?新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( )

A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3

【分析】如图:设BC=2r1,AB=2r2,AC=2r3,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到答案. 【答案】A

变式训练题:

(2018?新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A.

B.

C.

D.

【答案】:C