必修一期中复习
一、基本初等函数性质复习课型A 1.函数y?A.(3,1)
41log0.5(4x?3)的定义域为(A)
C(1,+∞)
D.(
34B(3,∞)
4,1)∪
(1,+∞) 2.设a?log3?,b?log2
3,c?log32,则
(A)
A.a?b?c B.a?c?b C.b?a?c D.b?c?a
3.函数f(x)=2x?3x的零点所在的一个区间是(B) (A)(-2,-1)(B)(-1,0)(C)(0,1)(D)(1,2) 4.全集U?R,集合
(CUM)?N?(A)
M?yy?2,x?R,N??xy?lg(3?x)?x??,则
A.(??,1)B.(??,3) C.(1,3)D.(1,??)
5.定义在R上的偶函数f(x)满足:对任意的x1,x2?[0,??)(x1?x2),有
f(x2)?f(x1)?0.则
x2?x1
(A)
A.f(3)?f(?2)?f(1)B.f(1)?f(?2)?f(3)
C.f(?2)?f(1)?f(3)D.f(3)?f(1)?f(?2) 6.若f(x)?1?a是奇函数,则a? 2x?1 .a?1
27.函数f(x)?8.已知
1?2log6x的定义域为 .(0,6]
?x2?1,(x?0)满足不等式f(1?x2)?f(2x)的x取值范围 f(x)???1,(x?0)(?1,2?1)
是
9.设0?x?1,则y?x?1的最小值是 1?x4
10.直线y?1与曲线y?x2?x?a有四个交点,则a的取值范围是
5a?(1,)
4二、函数复习课型C 1.已知
f(x)是定义在
R上的奇函数,且当
x?0时,
f(x)??2x?2x? 3(1)求f(x)的解析式 (2)画出f(x)的图像
(3)根据f(x)的图像写出不等式的解集 解(1)
??x2?2x?3,(x?0)?f(x)??0,(x?0)
?x2?2x?3,(x?0)?(2)略
(3)x?(??,?3)?(0,3)
2.已知x满足log1x2?log1(3x?2),求函数f(x)?log222xx ?log2的值域。
42解:解不等式得x??1,2?
xx?log2∵42 ?(log2x)2?3log2x?2f(x)?log2所以f(x)??0,2?
3.设x?1,y?1,且2logxy?2logyx3?0?,求T?x2?4y2的最小值
解:令t?logxy,∵x?1,y?1,∴t?0
由2logxy?2logyx?3?0得2t?2?3?0,∴2t2?3t?2?0,
t111∴(2t?1)(t?2)?0,∵t?0,∴t?,即logxy?,∴y?x2,
22∴T?x2?4y2?x2?4x?(x?2)2?4, ∵x?1,∴当x?2时,Tmin??4 例4.已知函数f(x)?ax?x?2x?1(a?1),
求证:(1)函数f(x)在(?1,??)上为增函数;
(2)方程f(x)?0没有负数根 证明:(1)设?1?x1?x2, 则f(x1)?f(x2)?ax?ax1?ax2?1?x1?2x?2?ax2?2 x1?1x2?1x1?2x2?23(x1?x2)??ax1?ax2?, x1?1x2?1(x1?1)(x2?1)∵?1?x1?x2,∴x1?1?0,x2?1?0,x1?x2?0, ∴
3(x1?x2)?0;
(x1?1)(x2?1)1∵?1?x1?x2,且a?1,∴ax?ax2,∴ax1?ax2?0, f(x2),
∴f(x1)?f(x2)?0,即f(x1)?∴函数f(x)在(?1,??)上为增函数;
(2)假设x0是方程f(x)?0的负数根,且x0??1,则ax0?x0?2?0, x0?1