§11.2.1 三角形全等的条件(二)
教学目标
1.三角形全等的“边角边”的条件.
2.经历探索三角形全等条件的过程,体会利用操作、?归纳获得数学结论的过程.
3.掌握三角形全等的“SAS”条件,了解三角形的稳定性. 4.能运用“SAS”证明简单的三角形全等问题. 教学重点
三角形全等的条件. 教学难点
寻求三角形全等的条件. 教学过程
一、创设情境,复习提问
1.怎样的两个三角形是全等三角形?2.全等三角形的性质?
3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:
图(1)中:△ABD≌△ACE,AB与AC是对应边; 图(2)中:△ABC≌△AED,AD与AC是对应边. 4.三角形全等的判定Ⅰ的内容是什么?
二、导入新课
1.三角形全等的判定(二)
(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:
如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?
育人犹如春风化雨,授业不惜蜡炬成灰
不难看出,这两个三角形有三对元素是相等的: AO=CO, ∠AOB= ∠COD, BO=DO.
如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.
(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)
由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等. 2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验: (1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合? 3.边角边公理.
有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”) 三、例题与练习 1.填空:
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是
育人犹如春风化雨,授业不惜蜡炬成灰
___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?). 2、例1 已知: AD∥BC,AD= CB(图3).
求证:△ADC≌△CBA.
问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF= CE或AE =CF)?怎样证明呢?
例2 已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE. 四、小 结:
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理. 五、作 业:
1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.
2.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF. 求证:△ABE≌△CDF.
育人犹如春风化雨,授业不惜蜡炬成灰
课后作业:<<课堂感悟与探究>>
§11.2.3 三角形全等的条件(三)
教学目标
1.三角形全等的条件:角边角、角角边. 2.三角形全等条件小结.
3.掌握三角形全等的“角边角”“角角边”条件. 4.能运用全等三角形的条件,解决简单的推理证明问题. 教学重点
已知两角一边的三角形全等探究. 教学难点
灵活运用三角形全等条件证明. 教学过程
Ⅰ.提出问题,创设情境
1.复习:(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? 三种:①定义;②SSS;③SAS.
2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢? Ⅱ.导入新课
问题1:三角形中已知两角一边有几种可能? 1.两角和它们的夹边. 2.两角和其中一角的对边.
问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能
育人犹如春风化雨,授业不惜蜡炬成灰
画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.
提炼规律:
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢? ①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长. ②画线段A′B′,使A′B′=AB.
③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.
④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′.
将△A′B′C′与△ABC重叠,发现两三角形全等.
ECDC'ABA'B'
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).
思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 探究问题4:
如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
ABCEDF
育人犹如春风化雨,授业不惜蜡炬成灰