教学时间 课题 解直三角形应用(三) 课型 新授课 使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解知 识 决. 和 能 力 教 过 程 逐步培养学生分析问题、解决问题的能力. 学 和 目 方 法 标 态 度 价值观 情 感 渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识. 教学重点 教学难点 要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决. 要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决. 多媒体课件 教学准备 教师 学生 “五个一” 课 堂 教 学 程 序 设 计 1.导入新课 上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决. 2.例题分析 例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°, 设计意图 求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米). 分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么? 由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt△ABC的方法求出BC和AB. 学生在把实际问题转化为数学问题后,大部分学生可自行完成 例题小结:求出中柱BC的长为2.44米后,我们也可以利用正弦计算上弦AB的长。 如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯. 另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想. 例2.如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东340方向上的B处。这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?65 0A P 34 0B . 引导学生根据示意图,说明本题已知什么,求什么,利用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一种解较为简便? 3巩固练习 为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米). 首先请学生结合题意画几何图形,并把实际问题转化为数学问题. Rt△ACD中,∠D=Rt∠,∠ACD=52°,CD=BE=15米,CE=DB=1.72米,求AB? (三)总结与扩展 请学生总结:通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直角三角形,从而把问题解决. 本课涉及到一种重要教学思想:转化思想. 作业 设计 必做 选做 教科书P92:5 教科书P92:6 教 学 反 思