七年级数学第4章图形的初步认识知识点填空题 下载本文

相交线和平行线 一、基本概念

1. 直线:(1)直线是向__________无限延伸的,直线没有端点。

(2)经过两点有且只有一条__________。

2.射线:直线上一点和它一旁的部分叫做__________,这个点叫做射线的端点,射线只

有一个端点。

2. 线段:(1)直线上两点之间的部分叫做__________,__________有两个端点.

(2)两点之间,__________最短。

(3)把一条线段分成两条相等线段的点,叫做线段的__________。

4.垂线;当两条直线相交所构成的四个角中有一个角是__________时,叫做两条直线互相垂直;其中一条直线叫做另一条直线的垂线,它们的交点叫做__________。 5、垂线的性质:(1)经过一点,有且只有__________条直线和已知直线垂直;

(2)直线外一点与直线上各点连结的所有线段中,__________最短。

6.两点间的距离:连结__________的线段的长度。

7.点到直线的距离:从直线外一点到__________的垂线段的长度。

8.两条平行线间的距离:两条平行线中一条直线上__________到另一条直线的距离。 9、角:有公共端,点的两条__________组成的图形叫做角。这个公共端点叫做角的顶点,这两条__________叫做角的边。

10、角平分线:从一个角的顶点出发,把这个角分成两个__________的角的射线,叫做角平分线。

11.平角、周角:射线绕端点旋转,当终止位置和起始位置成__________时,所成的角叫做平角;继续旋转回到__________位置时,所成的角叫做周角。

12、角的度量:1周角=__平角=___直角=360°, 1°=___’ , 1’=___” 13.小于平角的角的分类:__________角、__________角、__________角。

14.互为余角、补角:如果两个角的和是__________,这两个角叫做互为余角;如果两个角的和是__________,这两个角叫做互为补角。 15.相关角的性质:(1)对顶角__________;

(2)同角或等角的余角__________; (3)同角或等角的补角__________。

二、相交线和平行线

1.平行线:在同一平面内,__________的两条直线叫做平行线。

2.在同一平面内,两条直线的位置关系只有两种:__________。相交时,对顶角相等。

3.平行线的判定:

(1)同位角__________,两直线平行。

(2)内错角相等,两直线__________。 (3)同旁内角__________,两直线平行。

(4)平行(或垂直)于同一直线的两直线__________。 4、平行线的性质:(1)经过直线外一点,有且只有________条直线与这条直线平行。 (2)两直线平行,同位角__________。 (3)两直线平行,内错角__________。 (4)两直线平行,同旁内角__________.

(5)一条直线和两条平行线中的一条垂直(或平行),这条直线也和__________ 垂直(或平行).

(6)平行线间的距离处处__________。

(7)经过三角形一边的中点与另一边平行的直线必平分__________。

三、平行线分线段成比例

1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也__________。

2、平行线等分线段定理的推论:(1)经过梯形一腰的中点与底_____的直线,必平分另一腰。(2)经过三角形一边的中点与另一边平行的直线必平分__________。

3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成_________。 4.平行线分线段成比例定理的推论:__________于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

5.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段比例,那么这条直线__________于三角形的第三边。

6.性质:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成__________。