最新人教版小学试题 第13讲 二次函数的实际应用
基础满分 考场零失误
1.(2018·连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t+24t+1.则下列说法中正确的是(A) A.点火后9 s和点火后13 s的升空高度相同 B.点火后24 s火箭落于地面 C.点火后10 s的升空高度为139 m D.火箭升空的最大高度为145 m
2.(2018·湖北武汉,15,3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的
2
函数解析式是y=60t-t.在飞机着陆滑行中,最后4 s滑行的距离是 m. 3.(2018·贵州贵阳,22,10分)六盘水市梅花山国际滑雪场自建成以来,吸引了大批滑雪爱好者.一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似地用二次函数来表示.现测得一组数据,如下表所示.
滑行时间x/s 滑行距离y/m
0 0
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约为840米,他需要多少时间才能到达终点?
(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后所得图象对应的函数的表达式.
4.(2018·淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念
1 4
2 12
3 24
… …
2
部编本试题,欢迎下载! 最新人教版小学试题 品每件的销售价为50元时,每天可销售200件,当每件的销售价每增加1元,每天的销售数量将减少10件.
(1)当每件的销售价为52元时,该纪念品每天的销售数量为 件;
(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
能力升级 提分真功夫
5.(2018·扬州一模)一种包装盒的设计方法如图1所示,ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四点重合于图2中的点O,形成一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取(A)
A.30
B.25
C.20
D.15
6.(2018·葫芦岛)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.
销售单价x(元) 3.5 销售量y(袋)
(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,那么销售单价为多少元?
280
5.5 120
部编本试题,欢迎下载! 最新人教版小学试题 (3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
预测猜押 把脉新中考
7.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱呈抛物线形,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系. (1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
部编本试题,欢迎下载! 最新人教版小学试题
答案精解精析
基础满分 1.D 2.答案 24
3.解析 (1)设二次函数的表达式为y=ax+bx+c(a≠0), 将(0,0)代入函数表达式,得c=0,所以y=ax+bx.
22
把(1,4),(2,12)代入上式,得
解这个方程组,得
2
所以,所求二次函数表达式为y=2x+2x(x≥0). 当y=840时,840=2x+2x,
解得x1=20,x2=-21(不符合题意,舍去), 所以,他需要20 s才能到达终点.
2
(2)由y=2x+2x,得y=2
2
-,
则该二次函数图象的顶点坐标为,
所以,将y=2-的图象向左平移2个单位,再向下平移5个单位后所得图象的顶点坐
标为,
所以平移后所得图象对应的函数的表达式为y=2-或y=2x+10x+7.
2
4.解析 (1)由题意得200-10×(52-50)=200-20=180(件), 故答案为180. (2)由题意得:
y=(x-40)[200-10(x-50)] =-10x+1 100x-28 000
2
部编本试题,欢迎下载!