学生独立在练习本上列式计算。
指名汇报,说说根据什么数量关系列式。 板书:工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间 2.导入新课。
工程问题是我们日常生活中最常见的问题之一,今天这节课,我们就一起来探究日常生活中的工程问题。 二、探索新知
投影出示例题7。 1.阅读与理解。
学生阅读题目,理解题意。
学生交流各自对题意的理解:这道题是工程问题,工作总量就是公路的总长,工作效率就是每周修的公路长度,工作时间就是修完这条公路的时间;修这条公路是两队同时修,工作效率应该是两队工作效率之和。
提问:这道题求什么?求工作时间,需要知道哪些条件? (求工作时间,需要知道工作总量和工作效率。)
产生疑问:这道题要求两队合修的工作时间,可是这条道路有多长呢? 2.分析与解答。
(1)学生交流,指名汇报。
学生可能有以下思路:用假设法,假设公路的总长是18千米、36千米、90千米……
(2)根据各自的假设,尝试解答。
学生将公路总长假设一个具体长度,进行解答。
教师巡视,进行个别指导,发现学生的各种方法,为组织交流准备。 (3)组织交流。
全班展示并评价各种方法,让学生说说自己解决的思路与方法。 学生可能有以下不同的假设方法:
36(天) 536②假设全长36千米,36÷(36÷12+36÷18)=(天)
536③假设全长90千米,90÷(90÷12+90÷18)=(天)
5①假设全长18千米,18÷(18÷12+18÷18)=让每个展示的学生说说他们的解决思路是什么? (4)启发引导。
教师启发:公路全长可能是18千米、36千米、90千米……,不管公路全长是多少千米,我们都可以把这条公路全长看成什么?(单位“1”)
如果把这条公路全长看成单位“1”,两个队每天修的长度分别是多少呢?
11(一队每天修:1÷12=;二队每天修:1÷18=。)
1218学生计算,交流板书:
11 1÷(+)
12185 =1÷
3636 =(天)
5(5)观察思考:不同的方法计算出的结果一样吗?为什么?
引导学生通过交流发现:公路全长增加,两个队每天修的米数也在增加。 教师指出:他们单独修的时间不变,无论假设公路全长是多少,他们每天修路的米数在变化,但他们每天修这条路的几分之几没有变化。
3.回顾与反思。
(1)检验答案的合理性。 136136×+×=1 125185(2)提问:比较几种算法,你觉得哪种算法更简便?
虽然这几种算法中假设的道路长度不相同,但是不管假设这条路有多长,答案都是相同的。所以把道路长度假设成“1”来计算,更加简便。 三、反馈完善
1.教材第43页“做一做”。
这道题是和例题7相似的工程问题,可以放手让学生独立完成,鼓励学生选择将工作总量假设“1”来解答。
2.教材第45页“练习九”第6题。
这道题是求工作时间,可以用“工作总量÷工作效率和”,把工作总量看成
11单位“1”,所以列式是:1÷(+)。
20303.教材第45页“练习九”第7题。
这道题是将行程问题转化为工程问题来解答,把行驶的总路程看成工作总量,行驶的速度看成工作效率,行驶的时间看成工作时间。
4.教材第45页“练习九”第8题。
这道题和例题7相似,可以让学生独立解答,再组织交流订正。 5.教材第45页“练习九”第9题。
这道题有两种解题方法,方法一是把300当成工作总量,求出两队合种需要
10的时间300÷(300÷10+300÷5)=(小时);方法二是把工作总量看成单位“1”,
31110求出两队合种需要的时间1÷(+)=(小时)
1053四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问? 五、课堂作业
《补》
第三单元 分数除法
课题:整理和复习 第 1 课时 总第 课时
教学目标:
1.通过整理和复习,巩固倒数的意义,求倒数的方法,巩固分数除法的计算方法,提高计算能力。
2.通过整理和复习,掌握运用生活中有关分数除法问题的解题策略,感受数学知识与日常生活的密切联系,体会数学的价值,提高分析问题和解决问题的能力。
3.掌握整理复习的方法,培养学生养成整理复习的良好习惯。 教学重点:对所学的知识进行系统地回忆和整理。 教学难点:形成综合运用分数知识解决实际问题的能力。 教学准备:课件 教学过程: 一、谈话导入
1.这一单元,我们学习了许多知识,大家想想,我们学过的知识可以分成哪几部分内容?
(倒数的认识、分数除法、解决问题三个部分内容。)
今天这节课,我们就一起来对这个单元的知识进行整理和复习。 二、探索新知
1.复习倒数。 (1)什么是倒数?
(乘积是1的两个数互为倒数)
(2)怎样求一个数的倒数?
(求一个数的倒数,只要把它的分子分母交换位置。1的倒数是1,0没有倒数。)
2.复习分数除法的计算方法。
(1)学生以小组为单位,整理出分数除法的计算方法。 (2)展示交流整理结果。 让学生认真观察后讨论交流。
指名说说各自的看法,以及对不完善之处的修改意见。
通过交流,引导学生得出:整数可以看成分母是1的分数,所以不管被除数、除数是整数还是分数,计算方法都是一样的,也就是除以一个数(0除外),等于乘这个数的倒数。
(3)练习。
①完成教材第46页“整理和复习”第1题。
学生独立计算,组织交流汇报。汇报时让学生说说混合运算的运算顺序。 ②完成教材第47页“练习十”第1、2两题。 3.复习解决问题。
(1)出示教材第46页“整理和复习”第2题的第(1)小题。
2张大爷养了200只鹅,鹅的只数是鸭的。养了多少只鸭?
5学生独立解决问题。
提问:谁来说说自己的解题思路?
教师引导总结强化:“已知一个数的几分之几是多少,求这个数。”可以列方程解答;也可以用数量除以对应的分数,就能求出单位“1”。
(2)完成教材第47页“练习十”第3题。
(3)出示教材第46页“整理和复习”第2题的第(2)小题。
3张大爷养了200只鹅,鹅的只数比鸭少。养了多少只鸭?
5①说一说:这是哪一类型的解决问题?解决这样的问题最关键的是什么?这类问题可以用什么方法来解决?
②学生独立列方程解答。
③组织交流,交流时要讲清自己的解题思路。 (4)完成教材第47页“练习十”第4题。
(5)出示教材第46页“整理和复习”第2题的第(3)小题。
2张大爷养的鹅和鸭共有700只鹅,其中鹅的只数是鸭的。鹅和鸭各有多少
5只?