µÚ3½² µ¼Êý¼°ÆäÓ¦ÓÃ
[¿¼Ç鿼Ïò·ÖÎö] 1.µ¼ÊýµÄÒâÒåºÍÔËËãÊǵ¼ÊýÓ¦ÓõĻù´¡£¬ÊǸ߿¼µÄÒ»¸öÈȵã.2.ÀûÓõ¼Êý½â¾öº¯ÊýµÄµ¥µ÷ÐÔÓ뼫ֵ(×îÖµ)ÎÊÌâÊǸ߿¼µÄ³£¼ûÌâÐÍ£®
ÈȵãÒ» µ¼ÊýµÄ¼¸ºÎÒâÒå
1£®º¯Êýf(x)ÔÚx0´¦µÄµ¼ÊýÊÇÇúÏßf(x)ÔÚµãP(x0£¬f(x0))´¦µÄÇÐÏßµÄбÂÊ£¬ÇúÏßf(x)ÔÚµãP´¦µÄÇÐÏßµÄбÂÊk£½f¡ä(x0)£¬ÏàÓ¦µÄÇÐÏß·½³ÌΪy£f(x0)£½f¡ä(x0)(x£x0)£® 2£®ÇóÇúÏßµÄÇÐÏßҪעÒâ¡°¹ýµãPµÄÇÐÏß¡±Óë¡°ÔÚµãP´¦µÄÇÐÏß¡±µÄ²»Í¬£®
Àý1 (1)(2018¡¤È«¹ú¢ñ)É躯Êýf(x)£½x£«(a£1)x£«ax£¬Èôf(x)ΪÆ溯Êý£¬ÔòÇúÏßy£½
3
2
f(x)ÔÚµã(0,0)´¦µÄÇÐÏß·½³ÌΪ( )
A£®y£½£2x C£®y£½2x ´ð°¸ D
½âÎö ·½·¨Ò» ¡ßf(x)£½x£«(a£1)x£«ax£¬ ¡àf¡ä(x)£½3x£«2(a£1)x£«a.
ÓÖf(x)ΪÆ溯Êý£¬¡àf(£x)£½£f(x)ºã³ÉÁ¢£¬ ¼´£x£«(a£1)x£ax£½£x£(a£1)x£axºã³ÉÁ¢£¬ ¡àa£½1£¬¡àf¡ä(x)£½3x£«1£¬ ¡àf¡ä(0)£½1£¬
¡àÇúÏßy£½f(x)ÔÚµã(0,0)´¦µÄÇÐÏß·½³ÌΪy£½x. ¹ÊÑ¡D.
·½·¨¶þ ¡ßf(x)£½x£«(a£1)x£«axΪÆ溯Êý£¬ ¡àf¡ä(x)£½3x£«2(a£1)x£«aΪżº¯Êý£¬ ¡àa£½1£¬¼´f¡ä(x)£½3x£«1£¬¡àf¡ä(0)£½1£¬ ¡àÇúÏßy£½f(x)ÔÚµã(0,0)´¦µÄÇÐÏß·½³ÌΪy£½x. ¹ÊÑ¡D.
(2)ÈôÖ±Ïßy£½kx£«bÊÇÇúÏßy£½ln x£«1µÄÇÐÏߣ¬Ò²ÊÇÇúÏßy£½ln(x£«2)µÄÇÐÏߣ¬ÔòʵÊýb£½________. ´ð°¸ ln 2
½âÎö ÉèÖ±Ïßy£½kx£«bÓëÇúÏßy£½ln x£«1ºÍÇúÏßy£½ln(x£«2)µÄÇеã·Ö±ðΪ(x1£¬ln x1£«
2
2
3
2
2
3
2
3
2
2
3
2
B£®y£½£x D£®y£½x
1
1)£¬(x2£¬ln(x2£«2))£®
¡ßÖ±Ïßy£½kx£«bÊÇÇúÏßy£½ln x£«1µÄÇÐÏߣ¬Ò²ÊÇÇúÏßy£½ln(x£«2)µÄÇÐÏߣ¬ 11¡à£½£¬¼´x1£x2£½2. x1x2£«2
1
¡àÇÐÏß·½³ÌΪy£(ln x1£«1)£½(x£x1)£¬
x1
¼´Îªy£½£«ln x1 »òy£ln(x2£«2)£½
1
(x£x2)£¬ x2£«2
xx1
x2£x1
¼´Îªy£½£«£«ln x1£¬
x1
x1
¡à
2£x1
£½0£¬Ôòx1£½2£¬
x1
¡àb£½ln 2.
˼άÉý»ª (1)ÇóÇúÏßµÄÇÐÏßҪעÒâ¡°¹ýµãPµÄÇÐÏß¡±Óë¡°ÔÚµãP´¦µÄÇÐÏß¡±µÄ²îÒ죬¹ýµãPµÄÇÐÏßÖУ¬µãP²»Ò»¶¨ÊÇÇе㣬µãPÒ²²»Ò»¶¨ÔÚÒÑÖªÇúÏßÉÏ£¬¶øÔÚµãP´¦µÄÇÐÏߣ¬±ØÒÔµãPΪÇе㣮
(2)ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒå½âÌ⣬Ö÷ÒªÊÇÀûÓõ¼Êý¡¢Çеã×ø±ê¡¢ÇÐÏßбÂÊÖ®¼äµÄ¹ØϵÀ´½øÐÐת»¯£®ÒÔƽÐС¢´¹Ö±Ö±ÏßбÂʼäµÄ¹ØϵΪÔØÌåÇó²ÎÊýµÄÖµ£¬ÔòÒªÇóÕÆÎÕƽÐС¢´¹Ö±ÓëбÂÊÖ®¼äµÄ¹Øϵ£¬½ø¶øºÍµ¼ÊýÁªÏµÆðÀ´Çó½â£®
¸ú×ÙÑÝÁ·1 (1)(2018¡¤È«¹ú¢ò)ÇúÏßy£½2ln(x£«1)ÔÚµã(0,0)´¦µÄÇÐÏß·½³ÌΪ________£® ´ð°¸ 2x£y£½0
½âÎö ¡ßy£½2ln(x£«1)£¬¡ày¡ä£½Îª2£¬ÓÖÇÐÏß¹ýµã(0,0)£¬
¡àÇÐÏß·½³ÌΪy£½2x£¬¼´2x£y£½0.
(2)Èôº¯Êýf(x)£½ln x(x>0)Ó뺯Êýg(x)£½x£«2x£«a(x<0)Óй«ÇÐÏߣ¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ( )
2
2
.Áîx£½0£¬µÃy¡ä£½2£¬ÓÉÇÐÏߵļ¸ºÎÒâÒåµÃÇÐÏßбÂÊx£«1
?1?A.?ln£¬£«¡Þ? ?2e?
C£®(1£¬£«¡Þ) ´ð°¸ A
B£®(£1£¬£«¡Þ) D£®(£ln 2£¬£«¡Þ)
½âÎö É蹫ÇÐÏßÓ뺯Êýf(x)£½ln xÇÐÓÚµãA(x1£¬ln x1)(x1>0)£¬ 1
ÔòÇÐÏß·½³ÌΪy£ln x1£½(x£x1)£®
x1
É蹫ÇÐÏßÓ뺯Êýg(x)£½x£«2x£«aÇÐÓÚµãB(x2£¬x2£«2x2£«a)(x2<0)£¬
2
22
ÔòÇÐÏß·½³ÌΪy£(x2£«2x2£«a)£½2(x2£«1)(x£x2)£¬ 1??£½2?x2£«1?£¬¡à?x1
??ln x1£1£½£x22£«a£¬1
¡ßx2<0 2 x1 ÓÖa£½ln x1£«? ?1£1?2£1 ??2x1? 11?1?2 £½£ln £«?£2?£1£¬ x14?x1? 112 Áît£½£¬¡à0 x1412 Éèh(t)£½t£t£ln t(0 411?t£1?£3 Ôòh¡ä(t)£½t£1££½<0£¬ 2t2t¡àh(t)ÔÚ(0,2)ÉÏΪ¼õº¯Êý£¬ 1 Ôòh(t)>h(2)£½£ln 2£1£½ln £¬ 2e 2 ?1?¡àa¡Ê?ln£¬£«¡Þ?. ?2e? Èȵã¶þ ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ 1£®f¡ä(x)>0ÊÇf(x)ΪÔöº¯ÊýµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬È纯Êýf(x)£½xÔÚ(£¡Þ£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬µ«f¡ä(x)¡Ý0. 2£®f¡ä(x)¡Ý0ÊÇf(x)ΪÔöº¯ÊýµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬È纯ÊýÔÚij¸öÇø¼äÄÚºãÓÐf¡ä(x)£½0ʱ£¬Ôòf(x)Ϊ³£º¯Êý£¬º¯Êý²»¾ßÓе¥µ÷ÐÔ£® Àý2 ÒÑÖªº¯Êýf(x)£½2e£kx£2. (1)ÌÖÂÛº¯Êýf(x)ÔÚ(0£¬£«¡Þ)Äڵĵ¥µ÷ÐÔ£» (2)Èô´æÔÚÕýÊým£¬¶ÔÓÚÈÎÒâµÄx¡Ê(0£¬m)£¬²»µÈʽ|f(x)|>2xºã³ÉÁ¢£¬ÇóÕýʵÊýkµÄÈ¡Öµ·¶Î§£® ½â (1)ÓÉÌâÒâµÃf¡ä(x)£½2e£k£¬x¡Ê(0£¬£«¡Þ)£¬ ÒòΪx>0£¬ËùÒÔ2e>2. µ±k¡Ü2ʱ£¬f¡ä(x)>0£¬´Ëʱf(x)ÔÚ(0£¬£«¡Þ)ÄÚµ¥µ÷µÝÔö£® µ±k>2ʱ£¬ÓÉf¡ä(x)>0µÃx>ln£¬´Ëʱf(x)µ¥µ÷µÝÔö£»