精校版第33届全国中学生物理竞赛复赛试题(附答案) 下载本文

第33届全国中学生物理竞赛复赛理论考试试题解答

一、(20分)如图,上、下两个平凸透光柱面的半径分别为R1、R2,且两柱面外切;其剖面(平面)分别平行于各自的轴线,且相互平行;各自过切点的母线相互垂直。取两柱面切点O为直角坐标系O-XYZ的原点,下侧柱面过切点O的母线为X轴,上侧柱面过切点O的母线为Y轴。一束在真空中波长为?的可见光沿Z轴负

方向傍轴入射,分别从上、下柱面反射回来的光线会发生干涉;借助于光学读数显微镜,逆着Z轴方向,可观测到原点附近上方柱面上的干涉条纹在X-Y平面的投影。R1和R2远大于傍轴光线干涉区域所对应的两柱面间最大间隙。空气折射率为n0?1.00。试推导第k级亮纹在X-Y平面的投影的曲线方程。

已知:a. 在两种均匀、各向同性的介质的分界面两侧,折射率较大(小)的介质为光密(疏)介质;光线在光密(疏)介质的表面反射时,反射波存在(不存在)半波损失。任何情形下,折射波不存在半波损失。伴随半波损失将产生大小为π的相位突变。b. sinx?x, 当x??1。

二、(20分)某秋天清晨,气温为4.0?C,一加水员到实验园区给一内径为2.00 m、高为2.00 m的圆柱形不锈钢蒸馏水罐加水。罐体导热良好。罐外有一内径为4.00 cm的透明圆柱形观察柱,底部与罐相连(连接

处很短),顶部与大气相通,如图所示。加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),并密闭了罐顶的加水口。此时加水员通过观察柱上的刻度看到罐内水高为1.00 m。 (1)从清晨到中午,气温缓慢升至24.0?C,问此时

观察柱内水位为多少?假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略。 (2)从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少?求这个过程中罐内空气的热容量。

已知罐外气压始终为标准大气压p0?1.0?1510,P水a在4.0?C时的密度为

?0?1.00?103kg?m?3,水在温度变化过程中的平均体积膨胀系数为??3.03?10?4K?1,重力加速度

大小为g?9.80m?s?2,绝对零度为?273.15?C。

三、(20分)木星是太阳系内质量最大的行星(其质量约为地球的318倍)。假设地球与木星均沿圆轨道绕太阳转动,两条轨道在同一平面内。将太阳、地球和木星都视为质点,忽略太阳系内其它星体的引力;且地球和木星之间的引力在有太阳时可忽略。已知太阳和木星质量分别为ms和mj,引力常量为G。地球和木星绕太阳运行的轨道半径分别是re和rj。假设在某个时刻,地球与

太阳的连线和木星与太阳的连线之间的夹角为?。这时若太阳质量突然变为零,求 (1)此时地球相对木星的速度大小vej和地球不被木星引力俘获所需要的最小速率v0。 (2)试讨论此后地球是否会围绕木星转动,可利用(1)中结果和数据ms?2.0?1030kg、

mj?1.9?1027kg、木星公转周期Tj?12 y。

四、(20分)蹦极是年轻人喜爱的运动。为研究蹦极过程,现将一长为L、质量为m、当仅受到绳本身重力时几乎不可伸长的均匀弹性绳的一端系在桥沿b,绳的另一端系一质量为M的小物块(模拟蹦极者);假设M比m大很多,以至于均匀弹性绳受到绳本身重力和蹦极者的重力向下拉时会显著伸长,但仍在弹性限度内。在蹦极者从静止下落直至蹦极者到达最下端、但未向下拉紧绳之前的下落过程中,不考虑水平运动和可能的能量损失。重力加速度大小为g。 (1)求蹦极者从静止下落距离y(y?L )时的速度和加速度的大小,蹦极者在所考虑的下落过程中的速度和加速度大小的上限。 (2)求蹦极者从静止下落距离y(y?L )时,绳在其左端悬点b处张力的大小。

五、(20分)一种拉伸传感器的示意图如图a所示:它由一半径为r2的圆柱形塑料棒和在上面紧密缠绕N(N??1)圈的一层细绳组成;绳柔软绝缘,半径为r1,外表面均匀涂有厚度为t(t??r1??r2)、电阻率为?的石墨烯材料;传感器两端加有环形电极(与绳保持良好接触)。未拉伸时,缠绕的绳可视为N个椭圆环挨在一起放置;该椭圆环面与圆柱形塑料棒的横截面之间的夹角为?(见图a),相邻两圈绳之间的接触电阻为Rc。现将整个传感器沿塑料棒轴向朝两端拉伸,绳间出现n个缝隙,每个缝隙中刚好有一整圈绳,这圈绳被自动调节成由一个未封闭圆环和两段短直线段(与塑料棒轴线

平行)串接而成(见图b)。假设拉伸前后? 、r1、r2、?、t均不变。

(1)求拉伸后传感器的伸长率?(?是传感器两电极之间距离的伸长与其原长之比)和两环形电极间电阻的变化率;

(2)在传感器两环形电极间通入大小为I的电流,求此传感器在未拉伸及拉伸后,在塑料棒轴线上离塑料棒中点O距离为D(D远大于传感器长度)的P点(图中未画出)处沿轴向的磁感应强度。

已知:长半轴和短半轴的长度分别为a和b的椭圆的周长为π(3

a?b?ab),其中b?0。 2