(1)当n=2时,因为公差不为零,所以a?c,所以
(a?c)2a?c??2b2,于是当n=2时原式成立
222(2)假设当n?k(k?2)时原式成立,即ak?ck?2bk 当n?k?1时
ak?1?ck?1(a?c)(ak?ck)ak?1?ck?1?ack?cak)(a?c)(ak?ck)????0
222k?1因此ak?1?c(a?c)(ak?ck)??b(ak?ck)?b?2bk?2bk?1
2于是当n=k+1时原式成立
综上,当n?2,n?N?时,原式总成立。
nn例10.求证:()n?n!?()n (n?6,n?N?)
23n()n证明:(1)设an?2
n!an?1ann?1n?1)n!1n?1n112???()?(1?)n n(n?1)!2n2n()n2(a1由于当n?2时,(1?)n?2,因此,n?1?1,an?1?an
ann36729??1,故当n?6时an?1 因a6?an?6!720!n()nn即2?1,故()n?n!
n!2n?1n?1n()()nbn!1n?1n11??()?(1?)n (2)设bn?3,n?1?3nn!bn(n?1)!3n3n()n3b1当n?N?时(1?)n?3,n?1?1,bn?1?bn
bnn
nn()2664n??1,故当n?6时bn?1,即3?1,故()n?n! 因b6?n!6!7203综上,原不等式得证。
例11.已知抛物线y2?x?4上的两点A(0,2),A(?4,0)在该抛物线上找一点C1,使AB?BC1,找一点C2,使AC1?C1C2,找一点C3,使AC2?C2C3,…,依次下去,得到
?,Cn,?,记Cn(an,bn)(1)写出bn?1与bn的关系(2)求证抛线上一系列点C1,C2,C3,bn?(?1,0)(3)求证b2n?b2n?1(4)求证{b2n?1}递增 证明:(1)因ACn?CnCn?1故
bn?1?bnbn?2?,
an?1?anan2因Cn(an,bn)在抛物线y2?x?4,故an?bn?4故
bn?1?bnbn?1?bn22?bn?2bn?42??1
1111???1,bn?1???bn???(bn?2)?2
bn?1?bnbn?2bn?2bn?2(2)用数学归纳法 ①由AB?BC1得
b1b221???1,12???1,b1???(?1,0) a1?442b14②假设bk?(?1,0),则bk?1(bk?1)21???bk???0
bk?2bk?2(bk?1)2bk?2?(bk?1)21?bk(bk?1)?0,bk????1 =bk???1?1??bk?2bk?2bk?2于是bk?1?(?1,0),由数学归纳法原理得bn?(?1,0)
11?bn?4??(bn?2) (3)bn?1?2??bn?2bn?21设dn?bn?2,则dn?1?4?(?dn)
dn1由(1)知1?dn?2,函数f(x)?x?在x?(1,2)上是递增
x111d2?4?(d1?)?,
d261111?d1?,4?(d2?)?4?(d1?), 由d2?d1得,d2?d2d1d2d11111)?4?(d2?) ?d2?故d3?d2得,d3?,4?(d3?d3d3d2d2于是d4?d3
假设d2k?d2k?1,用上面的方法可得d2k?2?d2k?1 由数学归纳法原理得d2n?d2n?1恒成立,故b2n?b2n?1
111?d2n?1 )?d2n?1?4?[4?(d2n?1?)]?(4) d2n?1?d2n?1?4?(d2n?d2nd2n?1d2nd?d2n?111??2n?0(由(3)=) dddd2n?12n2n2n?1
所以d2n?1?d2n?1,于是b2n?1?b2n?1,{b2n?1}递增