九年级数学上册二次函数(大题) 下载本文

教学课题 二次函数综合问题方法与解析 题型一:二次函数中的最值问题(重点掌握) 例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点. (1)求抛物线y=ax2+bx+c的解析式; (2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值. 教学过程 方法提炼:已知一条直线上一动点M和直线同侧两个固定点A、B,求AM+BM最小值的问题,我们只需做出点A关于这条直线的对称点A’,将点B与A’连接起来交直线与点M,那么A’B就是AM+BM的最小值。同理,我们也可以做出点B关于这条直线的对称点B’,将点A与B’连接起来交直线与点M,那么AB’就是AM+BM的最小值。应用的定理是:两点之间线段最短。 A A B B M 或者 M A’ B’ 练习:如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 提示:因为△BNC的面积不好直接求,将△BNC的面积分解为△MNC和△MNB的面积和。然后将△BNC的面积表示出来,得到一个关于m的二次函数。此题利用的就是二次函数求最值的思想,当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值。 题型二:二次函数与三角形的综合问题 例2:如图,已知:直线y??x?3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点. (1)求抛物线的解析式; (2)若点D的坐标为(-1,0),在直线y??x?3上有一点P,使ΔABO与ΔADP相似,求出点P的坐标; 方法提炼:求一点使两个三角形相似的问题,我们可以先找出可能相似的三角形,一般是有几种情况,需要分类讨论,然后根据两个三角形相似的边长相似比来求点的坐标。