数列知识点总结
1. 等差数列的定义与性质
定义:an?1?an?d(d为常数),an?a1??n?1?d 等差中项:x,A,y成等差数列?2A?x?y 前n项和Sn??a1?an?n?na21?n?n?1?d 2性质:?an?是等差数列
(1)若m?n?p?q,则am?an?ap?aq;
(2)数列?a2n?1?,?a2n?,?a2n?1?仍为等差数列,Sn,S2n?Sn,S3n?S2n……仍为等差数列,公差为n2d;
(3)若三个成等差数列,可设为a?d,a,a?d (4)若an,bn是等差数列,且前n项和分别为Sn,Tn,则
amS2m?1? bmT2m?1(5)?an?为等差数列?Sn?an2?bn(a,b为常数,是关于n的常数项为0的二次函
Sn的最值可求二次函数Sn?an2?bn的最值;数)。或者求出?an?中的正、负分界项,(即:
?an?0当a1?0,d?0,解不等式组?可得Sn达到最大值时的n值;当a1?0,d?0,由
a?0?n?1?an?0可得Sn达到最小值时的n值. ) ??an?1?0(6)项数为偶数2n的等差数列?an?,有
S2n?n(a1?a2n)?n(a2?a2n?1)???n(an?an?1)(an,an?1为中间两项) S偶?S奇?nd,
S奇S偶?an. an?1,有
(7)项数为奇数2n?1的等差数列?an?S2n?1?(2n?1)an(an为中间项), S奇?S偶?an,
.
S奇S偶?n. n?12. 等比数列的定义与性质
定义:
an?1?q(q为常数,q?0),an?a1qn?1
.an等比中项:x、G、y成等比数列?G2?xy,或G??xy.
?na1(q?1)?前n项和:Sn??a1?1?qn?
(q?1)?1?q?性质:?an?是等比数列
·an?ap·aq (1)若m?n?p?q,则am(2)Sn,S2n?Sn,S3n?S2n……仍为等比数列,公比为qn. 3.求数列通项公式的常用方法
?Sn?Sn?1,n?2 ◆ 由Sn求an。( an?? )
?S1,n?1111例1:数列?an?,a1?2a2?……?nan?2n?5,求an
2221解 n?1时,a1?2?1?5,∴a1?14
2111 n?2时,a1?2a2?……?nan?2n?5 ①
222111a1?2a2?……?n?1an?1?2n?1?5 ②
22 2?14(n?1)1n?1①—②得:nan?2,∴an?2,∴an??n?1
22(n?2)?5[练习]数列?an?满足Sn?Sn?1?an?1,a1?4,求an
3注意到an?1?Sn?1?Sn,代入上式整理得
Sn?1?4,又S1?4,∴?Sn?是等比数列,Snn?1·4故Sn?4。n?2时,an?Sn?Sn?1?……?3n?3?4n?1,n?2故an??
?4,n?1
.
◆由递推公式求an
(1)累加法(an?1?an?f(n)形式)
例2:数列?an?中,a1?1,an?3n?1?an?1?n?2?,求an
an?an?1?3n?1??3(3n?1?1)an?1?an?2?3n?2?2n?1解:n?2时, ? 累加得an?a1?3?3???3?2????a2?a1?3? ?an?(2)累乘法(
1n(3?1) 2an?1?f(n)形式) anan例3:数列?an?中,a1?3,n?1?,求an
ann?1解:
aaa2a312n?113·……n?·……,∴n?又a1?3,∴an?a1a2an?123na1nn.
(3)构造新数列(构造的新数列必为等比数列或等差数列) ▼取倒构造(
an?1等于关于
an的分式表达)
例4:a1?1,an?1?2an,求an an?2解:由已知得:
a?2111111?n??,∴?? an?12an2anan?1an2?1?11111·??n?1?, ∴??为等差数列,?1,公差为,∴?1??n?1?a1an222?an?∴an?2n?1
▼ 同除构造
例5:a1?1,an?1?3an?3n,求an。 解:对上式两边同除以3n?1,得
an?1an1a11?an????,,则为等差数列,?n?n?1n33333?3?.