“鸡兔同笼”问题是我国古代著名的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以提高学生的逻辑推理能力;另一方面使学生体会列表法和假设法的一般性。
由于“鸡兔同笼”问题的原题数据较大,不便于学生进行探究,所以教材以化繁为简的思想为指导,先在例1中安排一道数据较小的“鸡兔同笼”问题,让学生探索解决方法。
“阅读材料”中介绍了原来孙子提出的大胆设想。他假设去掉每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔也就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚由原来的94只,变为47只;而且,此时的鸡就变为“一个头和一只脚”,兔子则是“一个头两只脚”。由此可以知道,只要有一只“双脚兔”,脚的数量就比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与它们的头的数量之差,就是兔子的只数,即47-35=12(只),鸡的数量就是35-12=23(只)。
日常生活中,“鸡兔同笼”的问题有很多的变式。教材在“做一做”中安排的日本民间流传的“龟鹤算”问题以及租船、植
树等实际问题均与“鸡兔同笼”本质相同,通过让学生解决这些相关的问题,一方面让学生进一步明确“鸡兔同笼”问题的实质,了解其在生活中的广泛应用;另一方面也可以巩固学生解决这类问题的方法。
一、本单元教学内容: 鸡兔同笼问题。 二、重、难点设置:
单元重点:尝试用不同的方法解决“鸡兔同笼”问题,在尝试中提高学生的思维能力。
单元难点:弄清“鸡兔同笼”问题的结构特征和解题策略,经历多样化解题的过程,初步形成解决此类问题的一般性策略。
“鸡兔同笼”问题集的趣味性、解题策略的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现两种基本的解题思路:列表法和假设法。列表法能直观反映数据的变化,学生比较容易接受,但数据较大时比较烦琐,适用性有限;假设法是一种算术方法,计算比较简便,是解决此类问题的一般策略,但算理抽象,理解有一定难度。
调查发现:对于“鸡兔同笼”问题,一部分学生在“奥数”中
接触过,但多数学生还缺少独立解决本问题的策略,没有体会到解决问题策略的多样性。所以,教学中,主要采用教师适当讲解与学生自主探究相结合的教学方式,让学生在尝试、探索、交流、比较中,弄清“鸡兔同笼”问题的结构特征和解题策略,经历多样化解题的过程,初步形成解决此类问题的一般性策略。
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会假设法的一般性。
3.在解决问题的过程中,提高学生的逻辑思维能力。
1.采取直观形象的方式,让学生探讨不同的方法。 2.适当地把握教学要求。
鸡兔同笼 1课时