信号与系统习题集(郑君里) 下载本文

图文教程网http://www.jzcode.net/twjc

信号与系统习题答案(注:教材---郑君里编)

习题一

1-7 绘出下列各信号的波形:

?u(t)?u(t?T)?sin(4?t)(1)T; ?u(t)?2u(t?T)?u(t?2T)?sin(4?Tt)(2) 0 T 图1 0 1-9 粗略绘出下列各函数式的波形图:T ?t2T (1) f(t)?(2?e )u(t) ; (2) f(t)?(3e?t?6e?2t)u(t) ; (3)f(t)?图(52 e?t?5e?3t)u(t); (4)f(t)? e?tcos(10?t)?u(t?1)?u(t?2)?。 2 1 0 图1 9 0 0 1图 2ln2 3 图3 1-10 写出题图1-10(a)、(b)、(c)所示各波形的函数式。

0 1 2 1

图文教程网http://www.jzcode.net/twjc

f(t) 3 f(t) E 1

-2 0 (a)

2 t

2 1 1-10 题图0 t T a

1 2 t

(b)

(c)

f(t)? 11(t?2)?u(t?2)?u(t)??(t?2)?u(t)?u(t?2)?22

t?(1?)?u(t?2)?u(t?2)?2

b

f(t)?[u(t)?u(t?1)]?2[u(t?1)?u(t?2)]?4u(t?2);

f(t)?u(t)?u(t?1)?2u(t?2)?f(t)?Esin(t)?u(t)?u(t?T)?T图c:

1-12 绘出下列各时间函数的波形图,注意它们的区别: (1) t[u(t)?u(t?1)] ; (2)

tu(t?1); (3)

t[u(t)?u(t?1)]?u(t?1) ;

1 1 t (4)

0 1 图1 1 (t?1)u(t ?1) ; (5) 0 1 t ?(t?1)[u(t)?u(t?1)] ; 0 1 t (6)图2 图3 0 1 t 图5 图4 3 2 1 1 1-4 对于下图所示信号,由f(t)求f(-3t-2),但改变运算顺序,先求f(3t)或先求f(-t),讨论

所得结果是否与原书中的结果一致。 2 3 0 0 1 2 3 t t f(t)

图1 6 图7 方法一: -2 -1 1 t f(3t) f[3(t-2/3)]=f(3t-2)

1 (t?t[u(t?2)?u(t0 ?3)];t 2)[u(t?2)?u(t?3)]; (7)

1 -2/3 -1/3 1/3 t 1 0 -2/3 1 t

f(-3t-2) 2

1 -2/3 t

图文教程网http://www.jzcode.net/twjc

方法二: f [- (t+2)]=f(-t-2) ? ?

f(-t) 1 -1 2 f(-3t-2) ? ? 由图可看出所得结果与书中一致。 -2/3 t -1 t -3 -2 1-14 应用冲激信号的抽样特性,求下列表示式的函数值: t

(1)

??

???

f(t?t0)?(t)dt?f(?t0) ;

(2)

???f(t0?t)?(t)dt?f(t0) ;

(3)

?????(t?t0)u(t?t0t)dt?u(0)?122;

(4)?????(t?t0)u(t?2t0)dt?u(?t0)?0(e?t?t)?(t?2)dt?e2?2(t?sint)?(t?;

(5)????(6)

???6??)dt??6?sin?6??6?12 ;

(7) ?? ;

1-15 电容C1与C2串联,以阶跃电压源v(t)=Eu(t)串联接入,试分别写出回路中的电流i(t)、每个电容两端电压vc1(t)、vc2(t)的表

示式。

电路如图:

i(t)

+ VC1(t) C1 +

_ _ ??e?j?t[?(t)??(t?t0)]dt?1?e?j?t0v(t)=Eu(t) C2

路总电容+ cC2?c2(t) _ C?V1 回 c1?c2

?电路电流

i(t)?C

1-20 判断下列系统是否为线性的、时不变的、因果的?

duc(t)c1?c2?E?(t)dtc1?c2

c2E1vc1(t)?i(t)dt?u(t)c1?c1?c2c1E1vc2(t)?i(t)dt?u(t)c2?c1?c2

de(t)dt ;

r(t)?e(t)u(t) ; r(t)?3

(1)

(2)

图文教程网http://www.jzcode.net/twjc

(3) (4) (5) (6)

r(t)?sin[e(t)]u(t) ; r(t)?e(1?t) ; r(t)?e(2t) ;

r(t)?e2(t) ;

(7)

r(t)??e(?)d???5tt ;

??(8) 。

解:线性系统满足齐次性和叠加性;时不变系统的参数不随时间而变化,即:在同样起始状态下,系统响应与激励施加于系统的时刻无关;因果系统在t0时刻的响应只与t=t0与t

(1) 激励 响应

r(t)??e(?)d?r(t)? e(t) ae(t)

de(t)dt

r1(t)?d[ae(t)]de(t)?a?ar(t)?dtdt线性系统

de(t?t0)r2(t)??r(t?t0)?dt e(t-t0) 时

不变系统

e(t0)

r3(t0)?de(t0)?r(t0)dt

系统的响应仅与t

(2) 激励 响应

e(t)

?r(t)?e(t)u(t)

ae(t) 1 e(t-t0)

r(t)?ae(t)u(t)?ar(t)?系统为线性系统

r2(t)?e(t?t0)u(t)?r(t?t0)?e(t?t0)u(t?t0)

?系统为时变系统

r(t)?e(t0)u(t0)?系统为因果系统

e(t0) 30

(3) 激励 响应 e(t) ae(t)

r(t)?sin[e(t)]u(t)

r1(t)?sin[ae(t)]u(t)?ar(t)?asin[e(t)]u(t)

?系统为非线性系统

e(t-t0)

r2(t)?sin[e(t?t0)]u(t)?r(t?t0)?sin[e(t?t0)]u(t?t0)

?系统为时变系统

e(t0)

r3(t0)?sin[e(t0)]u(t)?sin[e(t0)]u(t0)?r(t0)

?系统为因果系统 ?

(4) 激励 响应

e(t) r(t)=e(1-t)

ae(t) 1r(t)?ae(1?t)?ar(t)? 系统为线性系统

4