四年级下册数学试题-奥数专题讲练:第七讲 应用问题综合强化 竞赛篇(解析版)全国通用 下载本文

第七讲 应用问题综合强化

编写说明

本讲将要分成:和差倍分问题、年龄问题和盈亏问题三个方面进行讲解.这三个方面按照小学奥数的一般进度,都在四年级上半期的前半期进行系统学习,我们在此讲解的目的主要是帮助孩子“温故”,防止他们遗忘,同时帮助之前没有学习过奥数的同学把这部分知识补习上!教师根据本班孩子学习接受的情况,进行适当的基础知识讲解.

内容概述 从三年级到最后的小升初、分班考试中,很多学生都会问学了那么多专题(行程问题、年龄问题,植树问题,鸡兔同笼,盈亏问题,牛吃草问题等等),到底应该怎么去记忆和具体解答呢,这也是许多听课的家长所迷惑的问题. 其实这所有的专题都不是平行的,也就是划分标准不同,一般是按照三类来划分: 第一:按照题目内容,行程问题、年龄问题、时钟问题等; 第二:按照题目本质,和差倍分问题、盈亏问题、鸡兔同笼等,涉及的是思想,可以变成第一类的任何一种问题; 第三:按照解题思想,从反面考虑问题、还原问题等. 本讲是对原来学过和差倍分、年龄、盈亏问题进行总结强化,同时帮助你不断回顾已有知识,更加深刻体会做题的思路方法!

和差倍分问题

【例1】 有5堆苹果.较小的3堆平均有18个苹果.较大的2堆,苹果数之差为5个.又较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个.最大堆与最小堆平均有22个苹果.问:每堆各有多少个苹果?

分析:最大堆与最小堆共22×2=44个苹果.较大的2堆与较小的2堆共44×2+7-5=90个苹果.

所以中间的一堆有:(18×3+26×3—90)÷2=21个苹果; 较大的2堆有:26×3—21=57个苹果; 最大的一堆有:(57十5)÷2=31个苹果; 次大的2堆有:57—31=26个苹果; 较小的2堆有:18×3—21=33个苹果; 次小的一堆有:(33+7)÷2=20个苹果; 最小的一堆有:20—7=13个苹果.

【前铺】小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?

分析:如果小玲吃掉3块,那么小红与小玲的糖就一样多,说明小玲比小红多3块;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍,即小明加2是小红减2后的2倍,说明小明是小红的2倍少6(2×2+2).小红的颗数=(73-3+6)÷(1+1+2)=19块.

【例2】 某项竞赛分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍. 如果评出一、二、三等奖各2人,那么每个一等奖的奖金是308元.如果评出1个一等奖,2个二等奖,3个三等奖,那么一等奖的奖金是多少元?

分析:我们把每个三等奖奖金看作1份,那么每个二等奖奖金是2份,每个一等奖奖金则是4份.当一、二、三等奖各评2人时,2个一等奖的奖金是(308×2)元,2个二等奖的奖金等于1个一等奖的奖金308元,2个三等奖的奖金等于1个二等奖奖金(308÷2)元.所以奖金总数是:(308×2+308+308÷2)元.当评1个一等奖,2个二等奖,3个三等奖时,1个一等奖奖金看做4份,2个二等奖奖金2×2=4(份),3个三等奖奖金的份数是1×3=3(份),总份数就是:4+4+3=1l(份).这样,可以求出1份数为98元,一等奖的奖金:98×4=392(元).

【例3】 有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔支数的2倍,钢笔支数是铅笔支数的

1,只有一只盒里放的是水彩笔.这盒水彩笔共有多少支? 3

分析:铅笔数是钢笔的3倍,圆珠笔数是钢笔的2倍,因此这三种笔支数的和是钢笔数的6(=l+3+2)倍.17+23+33+36+38+42+49+5l 除以6余l,所以水彩笔的支数除以6余l,在上述8盒的支数中,只有49除以6余1,因此水彩笔共有49支.

【前铺】盒中有黄、红、蓝三种颜色的棋子共66粒,其中黄色棋子数是红色棋子数的4倍,

蓝色棋子数的2倍等于黄色棋子数的3倍.这个盒中三种颜色的棋子各有多少粒?

分析:把红棋子数看作1份,则黄棋子为4份,蓝棋子为6份,红、黄、蓝棋子数分别为:6、24、36粒.

【例4】 有长短两支蜡烛(两支蜡烛同样时间燃烧的长度相同),它们的长度之和为56厘米.将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃之前一样长,这时短蜡烛的长度又恰好是长蜡烛的

2.点燃前,长蜡烛有多长? 3

分析:我们要注意发掘题目中真正的不变量,实际上这个题目中两根蜡烛的长度差是不变的.(为什么?由于两根蜡烛燃烧的速度一样).把原来短蜡烛的长度看作3份,那么后来长蜡烛的长度也为3份,后来短蜡烛的长度为2份,差值为1份,那么原来长蜡烛长度为4份,所以1份为56÷(4+3)=8(厘米),原来长蜡烛为4×8=32(厘米).

【前铺】某日停电,房间里燃起了长短两根蜡烛,它们燃烧速度是—样的.开始时长蜡烛是短蜡烛长度的2倍,当送电后吹灭蜡烛,发现此时长蜡烛是短蜡烛长度的3倍.短蜡烛燃烧掉的长度是5厘米.问原来两根蜡烛各有多长?

分析:我们要注意发掘题目中真正的不变量,实际上这个题目中两根蜡烛的长度差是不变的.(为什么?由于两根蜡烛燃烧的速度一样). 那么我们根据题意可知:原长蜡烛长度=2倍原短蜡烛长度,差为1倍原短蜡烛长度;后长蜡烛长度=3倍后短蜡烛长度,差为2倍后短蜡烛长度;所以原短蜡烛长度=2倍后短蜡烛长度,也就是说短蜡烛燃烧了1倍后短蜡烛长度,为5厘米,所以原短蜡烛长10厘米,原长蜡烛长20厘米.

【巩固】某日停电,房间里同时点燃了两支同样长的蜡烛.这两支蜡烛的质量不同,一支可以维持3小时,另一支可以维持5小时,当送电时吹灭蜡烛,发现其中一支剩下的长度是另一支剩下长度的3倍.这次停电时间是多少小时?

分析:设停电x小时,可得:1?11x?3?(1?x),解得:x=2.5(小时). 53

【例5】 有三堆棋子每堆棋子一样多并且都只有黑白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占到三堆棋子里黑子总数的

2,如果把三堆棋子集5中到一起,那么白子占全部棋子的几分之几?

分析:第一堆里的黑子和第二堆里的白子一样多,那么我们不妨把第一堆里的黑子与第二堆里的白子调换一下,那么第一堆全白子,第二堆全黑子,且每堆总数不变.因为第三堆里的黑子占到三堆棋子里黑子总数的

2,我们不妨把第三堆里的黑棋子看作2份,那么剩下的35份都是第二堆的黑子,所以每堆都是三份,白子共(1+3)份,白子占全部棋子的9分之4.