2013-2014¸ßÊýA¿¼¾í´ð°¸¼°ÆÀ·Ö±ê×¼ ÏÂÔØ±¾ÎÄ

³Ïʵ¿¼ÊÔÎáÐIJ»Ðé £¬¹«Æ½¾ºÕù·½ÏÔʵÁ¦£¬ ¿¼ÊÔʧ°ÜÉÐÓлú»á £¬¿¼ÊÔÎè±×ǰ¹¦¾¡Æú¡£

¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­ÉϺ£²Æ¾­´óѧ¡¶ ¸ßµÈÊýѧI£¨A¼¶£© ¡·¿Î³Ì¿¼ÊÔ¾í£¨ £©±Õ¾í

¿Î³Ì´úÂë 105674 ¿Î³ÌÐòºÅ

2013 ¡ª¡ª2014 ѧÄêµÚ 1 ѧÆÚ

ÐÕÃû ѧºÅ °à¼¶

ÌâºÅ µÃ·Ö Ò» ¶þ Èý ËÄ Îå Áù Æß °Ë ×Ü·Ö µÃ·Ö

Ò»¡¢Ìî¿ÕÌâ(±¾Ìâ¹²6СÌ⣬ÿСÌâ2·Ö,Âú·Ö12·Ö.°Ñ´ð°¸ÌîÔÚ¸÷ÌâÖкáÏßÉÏ.)

×° 1. º¯Êýf(x)?limarctan(1?x)µÄ¶¨ÒåÓòΪ (?1,?? )£»ÔÚx? 1

n??n´¦£¬f(x)Óж¨Ò嵫²»Á¬Ðø¡£

¶© x,Ôòf?(0)? 1

n??1?x2n?13. ÒÑÖªx?ÊÇf(x)?asinx?sin3xµÄ¼«Öµµã£¬Ôòa= 2 332. Éèf(x)?limÏß¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­ (1?x2)2?C 4. Èô?f(x)dx?x?C,Ôò?xf(1?x)dx? ?2223x2sinx3?y3sint?5. Éèf(x)????2dt?dy£¬Ôòf??(x)? 600t?11?x??x6. ½éÓÚx?0,x??Ö®¼ä£¬ÓÉy?sinx,y?cosxËùΧ³ÉÆ½ÃæÍ¼ÐεÄÃæ»ýA= 22

µÃ·Ö

¶þ¡¢Ñ¡ÔñÌâ(±¾Ìâ¹²6СÌâ,ÿСÌâ2·Ö,Âú·Ö12·Ö.ÿСÌâ¸ø³ö

µÄ4¸öÑ¡ÏîÖÐ,Ö»ÓÐÒ»Ïî·ûºÏÌâĿҪÇó,°ÑËùÑ¡ÏîǰµÄ×ÖĸÌîÔÚÀ¨ºÅÄÚ.)

1. Éè¶ÔÈÎÒâµÄx,×ÜÓÐ?(x)?f(x)?g(x),ÇÒlim[g(x)??(x)]?0,Ôòlimf(x)( A )

x??x??A. ²»Ò»¶¨´æÔÚ B. ´æÔÚÇÒµÈÓÚ0

1

C. ´æÔÚµ«²»Ò»¶¨Îª0 D. Ò»¶¨²»´æÔÚ

2. É躯Êýf(x)ÔÚµãx?a´¦¿Éµ¼,Ôòº¯Êýf(x)ÔÚµãx?a´¦²»¿Éµ¼µÄ³ä·ÖÌõ¼þÊÇ( B )

A. f(a)?0,ÇÒf'(a)?0 C. f(a)?0,ÇÒf'(a)?0

B. f(a)?0,ÇÒf'(a)?0 D. f(a)?0,ÇÒf'(a)?0

3. ÈôÁ¬Ðøº¯ÊýÔÚ±ÕÇø¼äÉÏÓм«´óÖµºÍ¼«Ð¡Öµ,Ôò( C ) A. ¼«´óÖµÒ»¶¨ÊÇ×î´óÖµ, ÇÒ¼«Ð¡ÖµÒ»¶¨ÊÇ×îСֵ B. ¼«´óÖµÒ»¶¨ÊÇ×î´óÖµ, »ò¼«Ð¡ÖµÒ»¶¨ÊÇ×îСֵ C. ¼«´óÖµ²»Ò»¶¨ÊÇ×î´óÖµ,ÇÒ¼«Ð¡Öµ²»Ò»¶¨ÊÇ×îСֵ D. ¼«´óÖµ±Ø´óÓÚ¼«Ð¡Öµ

4. ÔÚÏÂÁеÈʽÖÐ,ÕýÈ·µÄ½á¹ûÊÇ( D )

A.

?f'(x)dx?f(x) ?f(x)dx?f(x)

B. D.

?df(x)?f(x)

df(x)dx?f(x) ?dxC. d5. Éè

?baf(x)?0,ÇÒf(x)ÔÚ[a,b]ÉÏÁ¬Ðø,Ôò( B )

B. ±Ø´æÔÚx,ʹf(x)?0 D. ²»´æÔÚf(x),ʹf(x)?0

A. f(x)?0

C. ´æÔÚΨһµÄÒ»µãx,ʹf(x)?0

6. ÇúÏßy?x(x?1)(x?2)ÓëxÖáËùΧ³ÉÆ½ÃæÍ¼ÐεÄÃæ»ý¿É±íʾΪ( A )

A. B.

?102x(x?1)(x?2)dx??x(x?1)(x?2)dx

12?0x(x?1)(x?2)dx

102C. ??x(x?1)(x?2)dx??x(x?1)(x?2)dx

12D. ??0x(x?1)(x?2)dx

Èý¡¢¼ÆËãÌâ(±¾Ìâ¹²8СÌâ,ÿСÌâ6·Ö,Âú·Ö48·Ö.)

µÃ·Ö 2

¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­1x 1£®Çó¼«ÏÞlimx?0ln(1?2x)sinx2sin1x2sinxԭʽ=lim£¨·Ö£©3x?0½â£º 2x11?limxsin?0£¨3·Ö£©2x?0x

2£®Éèy?f?1?x?1?,f'(x)?,Çódy ?x?1x??'×° ?x?1??x?1?½â£ºdy?f'????dx £¨3·Ö£©

?x?1??x?1? ?x?1x?1?(x?1)dx £¨2·Ö£©

x?1(x?1)2¶© =

2dx £¨1·Ö£© 1?x2

1xÏß¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­

?(1?x)3. Çó¼«ÏÞlim?x?0?e????? ???1x½â£ºÕâÊÇ1ÐÍδ¶¨Ê½¡£

1limln1(1?x)xԭʽ=e¶ø

x?0xe£¬ £¨2·Ö£©

1ln(1?x)?11(1?x)ln(1?x)?x limln?limx?lim2x?0xx?0x?0exx1x1?1?x11?x?lim?? £¨3·Ö£© =limx?0x?02x(1?x)2x23