自动控制原理 吴怀宇 课后习题 第四章 下载本文

4-5已知系统如下图所示,试绘制根轨迹图。

解:由图可知系统的开环传递函数为G(s)H(s)?32K

s3?2s2?2s令s?2s?2s=0,解得 3个开环极点p1?0,p2??1?j,p3??1?j

根轨迹分支数为3,起点分别为(0,j0),(?1,?j)和(?1,j),终点分别为(?5,j0)和无穷远处。

在实轴上的根轨迹为???,0?段。

轨迹有3条渐近线,它与实轴上的交点坐标?a?渐近线与实轴正方向的夹角为?a??p??zii?1j?1nmjn?m2??

3(2k?1)?(2k?1)?=,(k=0,1,2)

n?m3当k=0,1,2时,计算得?a分别为60°,180°,-60° 确定分离点,由

111++=0无解得 无分离点 dd?(?1?j)d?(?1?j)32确定根轨迹与虚轴的交点:控制系统特征方程s?2s?2s?K=0将s=j? 代入上式可求得???=0???=?2,? K?0???K?4由?pi?(2k?1)??(??zjpi???pjpi)得出射角为?p3?j?1j?1j?imn?4,?p2???4,?p1??

则系统根轨迹如下图所示