【解】 (1)求C(s)/R(s), 由于N(s)=0,所以很简单
R(s)G1(s)G2(s)H2(s)H1(s)C(s)
G1G2C(s) ?R(s)1?G1G2H1?G2H2(2) 求C(s)/N(s),等效反馈内回路和相关串联通路,有下列图化简
N(s)G3(s)G2(s)1?G2(s)H2(s)C(s)G1(s)H1(s)
移动相加点后,
G2(s)G3(s)1?G2(s)H2(s)N(s)C(s)G1(s)H1(s)G2(s)1?G2(s)H2(s)
1?G1G2?G2G3C(s) ?N(s)1?G1G2H1?G2H22-8 已知系统结构图如图2- 51所示,试通过结构图等效变换求系统的传递函数C(s)/R(s)。
R(s)C(s)10 B(s)R(s)G1(s)G2(s)
C(s)H(s)G(s)H(s)
(c) (d)
G2(s)R(s)G1(s)G3(s)H(s)C(s)
(e)
R(s)G1(s)H1(s)G2(s)G3(s)H2(s)C(s)
(f)
G2(s)R(s)
G1(s)G3(s)H2(s)C(s)H1(s)
(g)
图2-51 习题2-8 结构图
【解】(a)
G1?G2G1G2?G2C(s)C(s), (b) ??R(s)1?(G1?G2)(G3?G4)R(s)1?G2(H1?H2)C(s)10 B(s)R(s)R(s)G1(s)G2(s)C(s)H(s)G(s)
H(s)
R(s)C(s)10 B(s)H(s)G(s)?
C(s)10(1?GH), ?R(s)1?H?GHR(s)R(s)G1(s)G2(s)C(s)G1(s)G2(s)C(s)H(s)
R(s)H(s)G2(s)
C(s)G1(s)G2(s)H(s)G2(s)
(d)
C(s)G1?G2 ?R(s)1?G2HG2(s)R(s)G1(s)G3(s)H(s)C(s)
(e)
GG?G2G3C(s) ?13R(s)1?G1G3?G3H2-9 图2-52介绍了一种非常灵活的电路结构,它的传递函数可以化为两个二阶或一个四阶系统。通过选择Ra, Rb, Rc, Rd的不同值,电路可以实现低通、高通或带阻滤波器功能。 (a) 证明如果Ra=R,Rb=Rc=Rd=∞,则从Vin, 到Vout的传递函数可以写成以下的低通滤波
器的形式
VoutA ?22VinTs?2?Ts?1其中,A?RoutR ,T?RC,??R12R2(b) 若Ra=R,Rd=R1,Rb=Rc=∞,求出电路描述的传递函数
Vout。 VinR2R1CRCRRRVinuo(t)RaRbRRcRdVout
图2-52 习题2-9电路图
2-10 画出图2-53中各系统结构图对应的信号流图,并用梅逊增益公式求各系统的传递函数C(s)/R(s)和C(s)/N(s)。 【解】(a) 信号流图如下
G2RG4G3?11G1111CN
C(s)G1G3?G2G3?G1G4?G2G4 ?R(s)1?G1G3?G2G3C(s)?1 N(s)(b) 信号流图如下
R1EG1G21?11?1?111?1CG3G4
p1??G1G2,p2??1,p3?G3G4,p4??G1G2G3G4,?i?1L1??G1G2,L2?G1G2G3G4,L3?1,L4??G3G4C(s)G1G2?1?G3G4?G1G2G3G4 ?R(s)G1G2?G1G2G3G4?G3G4(c) 信号流图如下
NG3R1G1?1G2G5?H1G41C`
求C(s)/R(s)
L1??G1G2H,L2??G2G5,L3?G4G5??1?L1?L2?L3?L1L3p1?G1G2,
?1?1?G4G5
G1G2(1?G4G5)C(s)? R(s)1?G1G2H?G2G5?G4G5?G1G2HG4G5求C(s)/N(s)
L1??G1G2H,L2??G2G5,L3?G4G5p1?G3,p2?G2,?1?1?G4G5,?2?1?G4G5
(G2?G3)(1?G4G5)C(s)? N(s)1?G1G2H?G2G5?G4G5?G1G2HG4G5