¡¶ÊýÖµ¼ÆËã·½·¨¡·ÊÔÌ⼯¼°´ð°¸(-6) 2 ÏÂÔØ±¾ÎÄ

¡¶¼ÆËã·½·¨¡·ÆÚÖи´Ï°ÊÔÌâ

Ò»¡¢Ìî¿ÕÌ⣺

1¡¢ÒÑÖªf(1)?1.0,f(2)?1.2,f(3)?1.3£¬ÔòÓÃÐÁÆÕÉú£¨ÐÁ²·Éú£©¹«Ê½¼ÆËãÇóµÃ

?13f(x)dx?_________,ÓÃÈýµãʽÇóµÃf?(1)? ¡£

´ð°¸£º2.367£¬0.25

22¡¢f(1)??1,f(2)?2,f(3)?1£¬Ôò¹ýÕâÈýµãµÄ¶þ´Î²åÖµ¶àÏîʽÖÐxµÄϵÊýΪ £¬

À­¸ñÀÊÈÕ²åÖµ¶àÏîʽΪ ¡£

L2(x)?11(x?2)(x?3)?2(x?1)(x?3)?(x?1)(x?2)22

´ð°¸£º-1£¬

3¡¢½üËÆÖµx*?0.231¹ØÓÚÕæÖµx?0.229ÓÐ( 2 )λÓÐЧÊý×Ö£» 4¡¢Éèf(x)¿É΢,Çó·½³Ìx?f(x)µÄÅ£¶Ùµü´ú¸ñʽÊÇ( )£»

xn?1?xn?xn?f(xn)1?f?(xn)

´ð°¸

35¡¢¶Ôf(x)?x?x?1,²îÉÌf[0,1,2,3]?( 1 ),f[0,1,2,3,4]?( 0 )£»

6¡¢¼ÆËã·½·¨Ö÷ÒªÑо¿( ½Ø¶Ï )Îó²îºÍ( ÉáÈë )Îó²î£»

7¡¢Óöþ·Ö·¨Çó·ÇÏßÐÔ·½³Ìf (x)=0ÔÚÇø¼ä(a,b)Äڵĸùʱ£¬¶þ·Ön´ÎºóµÄÎó²îÏÞΪ

b?an?1( 2 )£»

8¡¢ÒÑÖªf(1)£½2£¬f(2)£½3£¬f(4)£½5.9£¬Ôò¶þ´ÎNewton²åÖµ¶àÏîʽÖÐx2ϵÊýΪ

( 0.15 )£»

f(x)dx??011¡¢ Á½µãʽ¸ß˹ÐÍÇó»ý¹«Ê½¡Ö(0¶ÈΪ( 5 )£»

y?10?1113?13?1f(x)dx?[f()?f()]22323 )£¬´úÊý¾«

12¡¢ ΪÁËʹ¼ÆËã

346??x?1(x?1)2(x?1)3 µÄ³Ë³ý·¨´ÎÊý¾¡Á¿µØÉÙ£¬Ó¦½«¸Ã±í

1x?1 £¬ÎªÁ˼õÉÙÉáÈëÎó²î£¬Ó¦½«±í´ïʽ

´ïʽ¸ÄдΪ

y?10?(3?(4?6t)t)t,t?22001?1999¸ÄдΪ 2001?1999 ¡£

313¡¢ Óöþ·Ö·¨Çó·½³Ìf(x)?x?x?1?0ÔÚÇø¼ä[0,1]Äڵĸù,½øÐÐÒ»²½ºó¸ùµÄËùÔÚÇø

¼äΪ 0.5£¬1 ,½øÐÐÁ½²½ºó¸ùµÄËùÔÚÇø¼äΪ 0.5£¬0.75 ¡£ 14¡¢ ¼ÆËã»ý·Ö?0.51xdx,È¡4λÓÐЧÊý×Ö¡£ÓÃÌÝÐι«Ê½¼ÆËãÇóµÃµÄ½üËÆÖµÎª 0.4268 £¬

ÓÃÐÁ²·Éú¹«Ê½¼ÆËãÇóµÃµÄ½üËÆÖµÎª 0.4309 £¬ÌÝÐι«Ê½µÄ´úÊý¾«¶ÈΪ 1 £¬ÐÁ²·Éú¹«Ê½µÄ´úÊý¾«¶ÈΪ 3 ¡£

15¡¢ Éèf(0)?0,f(1)?16,f(2)?46,Ôòl1(x)? l1(x)??x(x?2) £¬f(x)µÄ¶þ´ÎÅ£¶Ù

²åÖµ¶àÏîʽΪ N2(x)?16x?7x(x?1) ¡£

16¡¢ Çó»ý¹«Ê½

Akf(xk)?af(x)dx?k??0bnµÄ´úÊý¾«¶ÈÒÔ( ¸ß˹ÐÍ )Çó»ý¹«Ê½Îª×î¸ß£¬¾ß

ÓÐ( 2n?1 )´Î´úÊý¾«¶È¡£

17¡¢ ÒÑÖªf (1)=1,f (3)=5,f (5)=-3,ÓÃÐÁÆÕÉúÇó»ý¹«Ê½Çó?15f(x)dx¡Ö( 12 )¡£

18¡¢ Éèf (1)=1£¬ f(2)=2£¬f (3)=0£¬ÓÃÈýµãʽÇóf?(1)?( 2.5 )¡£

319¡¢Èç¹ûÓöþ·Ö·¨Çó·½³Ìx?x?4?0ÔÚÇø¼ä[1,2]Äڵĸù¾«È·µ½ÈýλСÊý£¬Ðè¶Ô·Ö£¨ 10 £©´Î¡£

?x30?x?1?S(x)??132(x?1)?a(x?1)?b(x?1)?c1?x?3??220¡¢ÒÑÖªÊÇÈý´ÎÑùÌõº¯Êý£¬Ôò

a=( 3 )£¬b=£¨ 3 £©£¬c=£¨ 1 £©¡£

21¡¢l0(x),l1(x),?,ln(x)ÊÇÒÔÕûÊýµãx0,x1,?,xnΪ½ÚµãµÄLagrange²åÖµ»ùº¯Êý£¬Ôò

?lk?0nk?0nk(x)?(

4k1 )£¬

?xlk?0nkj(xk)?(

xj )£¬µ±

n?2ʱ

42( x?x?3 )¡£

22¡¢Çø¼ä?a,b?ÉϵÄÈý´ÎÑùÌõ²åÖµº¯ÊýS(x)ÔÚ?a,b?ÉϾßÓÐÖ±µ½_____2_____½×µÄÁ¬Ðøµ¼

?(x2?xk?3)lk(x)?Êý¡£

?1)µÄÐÎʽ£¬Ê¹¼ÆËã½á¹û½Ï¾«È· 23¡¢¸Ä±äº¯Êýf(x)?x?1?x (x?1f?x??x?1?x ¡£

24¡¢ÈôÓöþ·Ö·¨Çó·½³Ìf?x??0ÔÚÇø¼ä[1,2]Äڵĸù£¬ÒªÇó¾«È·µ½µÚ3λСÊý£¬ÔòÐèÒª¶Ô

·Ö 10 ´Î¡£

?2x3,0?x?1S?x???32?x?ax?bx?c,1?x?2ÊÇ3´ÎÑùÌõº¯Êý£¬Ôò 25¡¢Éè

a= 3 , b= -3 , c= 1 ¡£

?626¡¢ÈôÓø´»¯ÌÝÐι«Ê½¼ÆËã?0£¬ÒªÇóÎó²î²»³¬¹ý10£¬ÀûÓÃÓàÏʽ¹À¼Æ£¬ÖÁÉÙÓà 477¸öÇó»ý½Úµã¡£

4f(x)?3x?2x?1£¬Ôò²îÉÌf[2,4,8,16,32]? 3 ¡£ 27¡¢Èô

1exdx2f(x)d?x??1928¡¢ÊýÖµ»ý·Ö¹«Ê½

2 ¡£ Ñ¡ÔñÌâ

1[1?(f?8)0f?(?)1f()]µÄ´úÊý¾«¶ÈΪ

1¡¢ÈýµãµÄ¸ß˹Çó»ý¹«Ê½µÄ´úÊý¾«¶ÈΪ( B )¡£ A£® 2 B£®5 C£® 3 D£® 4 2¡¢ÉáÈëÎó²îÊÇ( A )²úÉúµÄÎó²î¡£

A. ֻȡÓÐÏÞλÊý B£®Ä£ÐÍ׼ȷֵÓëÓÃÊýÖµ·½·¨ÇóµÃµÄ׼ȷֵ C£® ¹Û²ìÓë²âÁ¿ D£®ÊýѧģÐÍ׼ȷֵÓëʵ¼ÊÖµ 3¡¢3.141580ÊǦеÄÓÐ( B )λÓÐЧÊý×ֵĽüËÆÖµ¡£

A£® 6 B£® 5 C£® 4 D£® 7 4¡¢Óà 1+x½üËÆ±íʾexËù²úÉúµÄÎó²îÊÇ( C )Îó²î¡£ A£® Ä£ÐÍ B£® ¹Û²â C£® ½Ø¶Ï D£® ÉáÈë

x3 5¡¢ÓÃ1+3½üËÆ±íʾ1?xËù²úÉúµÄÎó²îÊÇ( D )Îó²î¡£

A£® ÉáÈë B£® ¹Û²â C£® Ä£ÐÍ D£® ½Ø¶Ï 6¡¢-324£®7500ÊÇÉáÈëµÃµ½µÄ½üËÆÖµ£¬ËüÓÐ( C )λÓÐЧÊý×Ö¡£ A£® 5 B£® 6 C£® 7 D£® 8

7¡¢Éèf (-1)=1,f (0)=3,f (2)=4,ÔòÅ×Îï²åÖµ¶àÏîʽÖÐx2µÄϵÊýΪ( A )¡£ A£® ¨C0£®5 B£® 0£®5 C£® 2 D£® -2 8¡¢ÈýµãµÄ¸ß˹ÐÍÇó»ý¹«Ê½µÄ´úÊý¾«¶ÈΪ( C )¡£ A£® 3 B£® 4 C£® 5 D£® 2 9¡¢( D )µÄ3λÓÐЧÊý×ÖÊÇ0.236¡Á102¡£

(A) 0.0023549¡Á103 (B) 2354.82¡Á10£­2 (C) 235.418 (D) 235.54¡Á10£­1 10¡¢Óüòµ¥µü´ú·¨Çó·½³Ìf(x)=0µÄʵ¸ù£¬°Ñ·½³Ìf(x)=0±íʾ³Éx=?(x)£¬Ôòf(x)=0µÄ

¸ùÊÇ( B )¡£