贵州遵义市2014年中考数学试卷及答案(解析word版) 下载本文

贵州省遵义市2014年中考数学试卷

一、选择题(本题共10小题,每小题3分,共30分) 1.(3分)(2014?遵义)﹣3+(﹣5)的结果是( ) 8 2 A.﹣2 B. ﹣8 C. D. 考点: 有理数的加法. 分析: 根据同号两数相加,取相同的符号,并把绝对值相加,可得答案. 解答: 解:原式=﹣(3+5) =﹣8. 故选:B. 点评: 本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算. 2.(3分)(2014?遵义)观察下列图形,是中心对称图形的是( ) A.B. C. D. 考点: 中心对称图形 分析: 根据中心对称图形的概念对各选项分析判断后利用排除法求解. 解答: 解:A、不是中心对称图形,故本选项错误; B、不是中心对称图形,故本选项错误; C、是中心对称图形,故本选项正确; D、不是中心对称图形,故本选项错误. 故选:C. 点评: 本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.(3分)(2014?遵义)“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2013年全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为( ) 8101112 A.B. C. D. 1762×10 1.762×10 1.762×10 1.762×10 考点: 科学记数法—表示较大的数. n分析: 科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 11解答: 解:将1762亿用科学记数法表示为:1.762×10. 故选:C. n点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

4.(3分)(2014?遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=( )

30° 36° 40° A.C. D. 考点: 平行线的性质. 分析: 过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解. 解答: 解:如图,过点A作l1的平行线,过点B作l2的平行线, ∴∠3=∠1,∠4=∠2, ∵l1∥l2, ∴AC∥BD, ∴∠CAB+∠ABD=180°, ∴∠3+∠4=125°+85°﹣180°=30°, ∴∠1+∠2=30°. 故选A. 35° B. 点评: 本题考查了平行线的性质,熟记性质并作辅助线是解题的关键. 5.(3分)(2014?遵义)计算3x?2x的结果是( ) 5569 A.B. C. D. 5x 6x 6x 6x 考点: 单项式乘单项式. 分析: 根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可. 325解答: 解:3x?2x=6x, 故选B. 点评: 本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键. 6.(3分)(2014?遵义)已知抛物线y=ax+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是( )

2

3

2

A.B. C. D. 考点: 二次函数的图象;一次函数的图象. 分析: 本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除. 解答: 解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除; B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除; C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除; 正确的只有D. 故选:D. 点评: 此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等. 7.(3分)(2014?遵义)有一组数据7、11、12、7、7、8、11.下列说法错误的是( ) A.中位数是7 B. 平均数是9 C. 众数是7 D. 极差是5 考点: 极差;加权平均数;中位数;众数. 分析: 根据中位数、平均数、极差、众数的概念求解. 解答: 解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12, 则中位数为:8, 平均数为:=9, 众数为:7, 极差为:12﹣7=5. 故选A. 点评: 本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键. 8.(3分)(2014?遵义)若a+b=2,ab=2,则a+b的值为( ) 6 4 A.B. C. D. 3 2 考点: 完全平方公式. 222分析: 利用a+b=(a+b)﹣2ab代入数值求解. 222解答: 解:a+b=(a+b)﹣2ab=8﹣4=4, 故选:B. 点评: 本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它2

2