误差理论与测量平差基础习题集1 下载本文

第一章 绪 论

§1-1观 测 误 差

1.1.01 为什么说观测值总是带有误差,而且观测误差是不可避免的? 1.1.02 观测条件是由哪些因素构成的?它与观测结果的质量有什么联系? 1.1.03 测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试 举例说明。

1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定 误差的性质及符号:

(1) 长不准确; (2) 尺尺不水平; (3) 估读小数不准确; (4) 尺垂曲;

(5) 尺端偏离直线方向。

1.1.05 在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的 性质及符号:

(1) 视准轴与水准轴不平行; (2) 仪器下沉; (3) 读数不准确; (4) 水准尺下沆。

§1-2测量平差学科的研究对象

1.2.06 何谓多余观测?测量中为什么要进行多余观测? 1.2.07 测量平差的基本任务是什么?

§1-3测量平差的简史和发展

1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题? 1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?

§1-4 本课程的任务和内容

5

1.4.10 本课程主要讲述哪些内容?其教学目的是什么?

第二章 误差分析与精度指标

§2-1 正态分布

2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。

6

§2-2 偶然误差的规律性

2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?

2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性? 2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?

§2-3 衡量精度的指标

2.3.05 何谓精度?通常采用哪几种指标来衡量精度?

2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?

2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?

2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:

45o00’06” 44o59’55” 44o59’58” 45o00’04” 45o00’03” 45o00’04” 45o00’00” 44o59’58” 44o59’59” 44o59’59” 45o00’06” 45o00’03” 设α 没有误差,试求观测值的中误差。

2.3.09 有一段距离,其观测值及其中误差为345.67m+_15mm。试估计这个观测值的真误差的实际可能范围是多少?并求出该观测值的相对中误差。

2.3.10 已知两段距离的长度及其中误差分别为300.465m+_4.5cm及

660.894m+_4.5cm,试说明这两段距离的真误差是否相等?它们的精度是否等?

§2-4 精度、准确度与精确度

2.4.11 试写出协方差的定义式,并说明它是怎样描述这两个观测值之间的相互关系的。

2.4.12 两个独立观测值是否可称为不相关观测值?而两个观测值是否就是不独立观测值呢?

2.4.13 相关测量值向量X的协方差阵是怎样定义的?试说明DXX中各个元素的含

7

义。当向量X中的各个分量两两相互独立式,其协方差阵有什么特点? 2.4.14 试写出描写两个观测值向量X和Y之间相互关系的互协方差阵的定义式,并说明DXY中各个元素的含义。

2.4.15 何谓准确度?何谓精确度?当观测值中不存在系 统误差时,精确度就是精度吗?

§2-5 测量不确定度

2.5.16 测量数据的不确定性和不确定度是怎样定义的?不确定度评定的标准是什么?

§2-6 综合练习题

2.6.17 社队某量进行了两组观测,它们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1

?2,?1、??2和中误差??试求两组观测值的平均误差??1、并比较两组观测值的精度。

设有观测值向量X=【L1 L2】T,已知σt1=2秒,σt2=3秒,σ

21t1t2

=-2秒2,试写出

其协方差阵DXX。

2.6.19 设有观测值向量X=【L1 L2 L3】T的协方差阵Dxx={},试写出观测值L1、

3133L2及L3的中误差以及协方差σ

L1L2

、σ

L1L3

和σ

L2L3

第三章协方差传播律及权

§3-1数学期望的传播

3. 1.01数学期望是怎祥定义的?何谓数学期望的传播?试写出数学期望传播的运算公式.例如.已知同精度观测值=xi(i=1,2,```,n)的数学期望均为μ,问

1其算术平均值x=

n?i?1nxi的数学期望等于多少?

§3-2协方差传播律

3.2.02什么是协方差传播律?其主要用来解决什么问题?

8

3.2.03协方差传播律主要包含哪几个公式?试写出这些公式的推导过程。 3.2.04能否说协方差传播律就是误差传播律?为什么?

3.2.05当观测值的函数是非线性形式时,应用协方差传播律应注意哪些问題?试举

例说明之。

3. 2. 06试简述应用协方差传播律的计算步骤。

3.2.07下列各式中的Li(i = l,2,3)均为等精度独立观测值,其中误差为σ,试求X的 中误差:

(1)X=1/2(L1+L2)+L3 (2)X=L1L2/L3

3.2.08 巳知观测值的中误差σ1=σ2=σ, σ12 =0,设X=2L2+5,Y =L1 -2L2, Z=L1L2,t=X+Y,试求X,Y,Z和t的中误差。

3. 2. 09 已知独立观測值L1,L2的中误差为σ1和σ2,试求下列函数的中误差:

(1) X=L1-2L2; (2) Y=0.5L12+L1L2; (3) Z=sinL1/sin(L1+L2).

3.2. 10设有观测值向量L = [L1 L2 L3]T,其协方差阵为

?400???DLL=?030?,

?002???试分别求下列函数的方差:

⑴ F1-L1 -3L3; (2)F2 =3L2L3。

?6?1?2???(3)3.2.11设有观测值向量L = [L lL2 L3]T,其协方差阵为DLL=??141?,

??212???试分别求下列函数的方差: (1)F1=L1+3L2-2L3;

9