最短路径算法—Dijkstra 总结 下载本文

Dijkstra 算法解释

本文引用三篇文章:分别是 谢光新 zx770424 -Dijkstra 算法, -Dijkstra 算法,

中华儿女英雄 -Dijkstra 算法 有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。

谢光新 的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。

zx770424 将每一步过程,都用图示方式和公式代码\\伪代码对应也有助于,代码的理解。

中华儿女英雄 从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。起到总结的效果。

希望这篇汇总有助于大家对Dijkstra 算法的理解。

1

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

简介

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。

算法描述

(这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值)

1. 置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边)

2. 在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3 3. 对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2

Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将 加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 算法具体步骤

(1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或 )(若u不是v的出边邻接点)。

(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

(4)重复步骤(2)和(3)直到所有顶点都包含在S中。

复杂度分析

Dijkstra 算法的时间复杂度为O(n^2)

空间复杂度取决于存储方式,邻接矩阵为O(n^2)

2

3

4

5